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June 10
18:00 – 19:30 Registration

June 11
08:30 – 09:30 Registration

09:30 – 10:00 Opening Session

10:00 – 11:00 Invited talk
Frederico Caeiro (Nova Univ. Lisbon, Portugal)
A Review and Recent Developments in Tail Inference

11:00 – 11:30 Coffee Break

11:30 – 13:00 Contributed talks – Multivariate orderings

• M. Capaldo (U Salerno, Italy), J. Navarro (U Murcia, Spain)
Multivariate Gini’s indices: new developments and applications

• S. Bonnini (U Ferrara, Italy)
Distribution-Free Test on Treatment Effects with Multivariate Ordered Data: a Biosta-
tistical Application

• M. Denuit, P. Ortega-Jimenez (U C Louvain, Belgium), C.T. Robert (U Lyon 1,
France)
Monotonicity of conditional expectations given the sum for conditionally independent
risks

13:00 – 14:30 Lunch

14:30 – 16:00 Contributed talks – Censoring

• I. Basak (Penn State U, USA)
Prediction for Censored Lifetimes From Weibull Distribution in Khamis and Higgins
Step-Stress Model

• Y. Lu, M. Kateri (U Aachen, Germany)
A Heterogeneous Step-Stress Model for Exponential Lifetimes under Type-II Censoring

• E. Cramer (Aachen U, Germany)
Hybrid censored minimal repair and record data

16:00 – 16:30 Coffee Break

16:30 – 18:00 Contributed talks – Estimation

• P. Basak (Penn State U, USA)
Estimation of Parameters of Mixture of Two Normals Based on Lower Record Statistics

• N.I. Nikolov (Sofia U, Bulgaria)
Comparison of parameter estimation methods for a Beta-Uniform mixture model

• M. Chacko, A.E. Koshy (U Kerala, India)
Estimation of multicomponent stress-strength reliability for exponentiated Gumbel dis-
tribution using progressive type II censoring



Schedule
OSD2024

Jun 11–14, 2024

June 12
09:00 – 10:00 Invited talk

Luciano Pomatto (CalTech, USA)
New developments in the theory of stochastic orders

10:00 – 11:00 Contributed talks – Coherent systems 1

• T.A. Mazzuchi, S. Sarkani, L. Raubenheimer (G. Washington Univ., USA)
Development of k-out-of-n Failure Time Distributions in Dependent Environments

• A. Goroncy, K. Jasinski (Torun Univ., Poland)
Three-state discrete time k-out-of-n system and the number of components in all possible
states on system failure

11:00 – 11:30 Coffee Break

11:30 – 13:00 Contributed talks – Coherent systems 2

• M. Capaldo, A. Di Crescenzo (U Salerno, Italy), F. Pellerey (Politecnico Torino, Italy)
Analysis of systems with shared components, ROC distortions and lifetime distances

• J. Navarro (UMurcia, Spain), T. Rychlik (Inst. Math. Polish Acad. Sci.),M. Szymkowiak
(Poznan U, Poland)
Key distributions in the preservation of aging classes under the systems formation

• K. Davies (McMaster U, Canada), A. Dembinska (Warsaw U, Poland)
On the Residual Lifetimes of Dependent Components Upon System Failure

13:00 – 14:30 Lunch

14:30 – 16:00 Contributed talks – Variability

• A. Eberl, B. Klar (Karlsruhe Inst. Tech., Germany)
Always used, never questioned: Defining dispersion for discrete distributions

• J. Baz (U Oviedo, Spain), F. Pellerey (Politec. Torino, Italy), I. Diaz, S. Montes (U
Oviedo, Spain)
On effects of dependence in variability estimation

• A. Arriaza (U Cadiz, Spain), J. Navarro (U Murcia, Spain), M.A. Sordo, A. Suárez-
Llorens (U Cadiz, Spain)
A variance-based importance index for systems with dependent components

16:00 – 16:30 Coffee Break

16:30 – 18:00 Contributed talks – Applications

• V. Holý, J. Zouhar (Prague U Econ. Bus., Czechia)
Modelling Time-Varying Rankings

• J. Arevalillo (UNED, Spain), J. Navarro (U Murcia, Spain)
On stochastic orders for multivariate scale mixtures of skew normal distributions with
application to assess the evolution of summer temperatures in the Iberian Peninsula

• K. Trzcińska, E. Zalewska (U Lodz, Poland)
Analysis of the economic situation of people with different levels of education based on
the Zenga distribution
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June 13
09:00 – 10:00 Invited talk

Cécile Durot (Univ. Paris Nanterre, France)
Minimax Optimal rates of convergence in the shuffled regression, unlinked regression, and
deconvolution under vanishing noise

10:00 – 11:00 Contributed talks – Order statistics 1

• J. Navarro (U Murcia, Spain)
Are the order statistics ordered? A copula approach

• T. Rychlik (Inst. Math. Polish Acad. Sci.)
Bounds on Variances of Generalized Order Statistics

11:00 – 11:30 Coffee Break

11:30 – 13:00 Contributed talks – Nonparametric statistics 1

• X.L. Gu, G. Tang, G. Yu (U Pittsburgh, USA)
Nonparametric Estimators for A Binary Outcome Under A Monotonicity Restriction

• M.E. Benjrada (U Bergamo, Italy)
Nonparametric tests in deconvolution

• T. Lando (U Bergamo, Italy)
Testing second-order stochastic dominance

13:00 – 14:30 Lunch

14:30 – 16:00 Contributed talks – Distributions

• Ç. Çetinkaya (U Kırıkkkale, Turkey)
Order restricted inferences for R = P (X1 < Y < X2) based on the Weibull distribution
under joint progressive censoring

• M. Neuhäuser (Koblenz Univ., Renagen, Germany)
Trend tests based on the ordered heterogeneity test

• I. Birbicer, A.I. Genc (U Cukurova, Turkey)
Some relations for single and product moments of order statistics from K3D

16:30 – 18:00 Visit to Historical Sites of University of Coimbra

19:30 – 23:00 Conference Dinner
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June 14
09:00 – 10:00 Invited talk

Anna Dembińska (Warsaw Univ. Tech., Poland)
Discrete order statistics and their applications in reliability theory

10:00 – 11:00 Contributed talks – Nonparametric statistics 2

• O. Ozturk (Ohio State Univ., USA), O. Kravchuk, R. Jarrett (Univ. Adelaide, Aus-
tralia)
Enhancing Statistical Inference Through Post-Stratification in Completely Randomized
Designs

• A. Kovalevskii, M. Chebunin (Sobolev Inst. Math., Novosibirsk, Russia)
Limit theorems for multiple orderings of multidimensional data

11:00 – 11:30 Coffee Break

11:30 – 13:00 Contributed talks – Order statistics 2

• C. Empacher, U. Kamps (RWTH Aachen Univ., Germany)
Prediction of record values from several samples

• C. Empacher, U. Kamps (Aachen Univ., Germany), A.B. Schmiedt (Rosenheim Tech.
Univ., Germany)
Prediction intervals for future Pareto record values with applications in insurance

• M. Bieniek (Univ. Lublin, Poland)
Further developments on characterizations of distributions based on regressions of GOS

13:30 – 13:15 Closing Session
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A Review and Recent Developments in Tail Inference

Frederico Caeiroa
aCenter for Mathematics and Applications (CMA), NOVA University Lisbon, Portugal

Back to schedule

Studying Extreme events can be a challenge, because these rare events can occur outside the
range of available data. Consequently, statistical inference is derived from extreme observations,
using an appropriate tail model. In practice, the sample size is small. The extreme-value index
(EVI) measures the weight of the tail and is one of the primary parameters of extreme events.
Thus, a crucial step in tail inference is the estimation of the EVI. If ξ < 0, the distribution
function F belongs to the max-domain of attraction of the Weibull distribution, then is short-
tailed i.e. F has an upper bounded support; if ξ = 0, F belongs to the max-domain of attraction
of the Gumbel distribution and 1 − F has an exponential decay; If ξ > 0, F is heavy-tailed,
i.e., F belongs max-domain of attraction of the Fréchet distribution. Consequently, 1−F has a
polynomial decay. Attention will be given to heavy-tailed models, which are extremely important
due to the low frequency and high magnitude of extreme values.

Back to schedule
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New developments in the theory of stochastic orders

Luciano Pomattoa
aCalTech, USA

Back to schedule

Stochastic orders are a fundamental tool in the study of decision making, in information eco-
nomics, and, more generally, for the non-parametric comparison of probability distribution. In
this presentation I will provide an overview of some recent findings on stochastic dominance and
the Blackwell order, with implications for models of choice under risk and the comparison of
experiments.

Back to schedule
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Minimax Optimal rates of convergence in the shuffled
regression, unlinked regression, and deconvolution under
vanishing noise

Cécile Durota and Debarghya Mukherjeeb
aModal’x, Université Paris Nanterre, Nanterre, France, bBoston University, USA

Back to schedule

Shuffled regression and unlinked regression represent intriguing challenges that have garnered
considerable attention in many fields, including but not limited to ecological regression, multi-
target tracking problems, image denoising, etc. However, a notable gap exists in the existing
literature, particularly in vanishing noise, i.e., how the rate of estimation of the underlying signal
scales with the error variance.

This paper aims to bridge this gap by delving into the monotone function estimation problem
under vanishing noise variance, i.e., we allow the error variance to go to 0 as the number of
observations increases.

Our investigation reveals that, asymptotically, the shuffled regression problem exhibits a com-
paratively simpler nature than the unlinked regression; if the error variance is smaller than a
threshold, then the minimax risk of the shuffled regression is smaller than that of the unlinked
regression. On the other hand, the minimax estimation error is of the same order in the two
problems if the noise level is larger than that threshold.

Our analysis is quite general in that we do not assume any smoothness of the underlying mono-
tone link function.

Because these problems are related to deconvolution, we also provide bounds for deconvolution
in a similar context.

Through this exploration, we contribute to understanding the intricate relationships between
these statistical problems and shed light on their behaviors when subjected to the nuanced
constraint of vanishing noise.

Back to schedule
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Discrete order statistics and their applications in reliability
theory

Anna Dembińska
Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75,

00-662 Warsaw, Poland, e-mail: anna.dembinska@pw.edu.pl

Back to schedule

Order statistics play an important role in reliability theory. They appear in a natural way when
we consider lifetimes of some technical structures. Let X1, X2, . . . , Xn be lifetimes of n items
that form a system and X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the corresponding order statistics. Then
it is easily seen that

• X1:n describes the lifetime of a series system,

• Xn:n describes the lifetime of a parallel system,

• Xk:n describes the lifetime of a k-out-of-n system, i.e. a system consisting of n components
that functions if and only if at least k of the components work.

More generally, the lifetime of any coherent system can be expressed via order statistics, pro-
vided the random vector (X1, X2, . . . , Xn) is exchangeable, i.e. (X1, X2, . . . , Xn) has the same
distribution as (X1, X2, . . . , Xn) for any permutation (σ(1), σ(2), . . . , σ(n)) of (1, 2, . . . , n). A co-
herent system is a technical structure such that all its components are relevant and having the
property that replacing a failed component by a working one cannot cause a working system to
fail. As shown in [10], for any coherent system with exchangeable lifetimes of components, the
lifetime of the system T is given by

P (T > t) =
n∑

i=1

siP (Xi:n > t) for any t,

where s = (s1, . . . , sn) is the Samaniego signature of the system.

In my talk, I will focus on the case when the lifetimes X1, X2, . . . , Xn are discrete random
variables. As an example of a system with discrete Xi, i = 1, 2, . . . , n, we can consider a system
in which the component lifetimes are the numbers of turn-on and switch-off up to the failure,
or a system which performs a task repetitively and its components have certain probabilities of
failure upon each cycle. Treating the discrete case is considerably more complicated than the
absolutely continuous one due to non-zero probability of ties among times of component failures.

I will present methods for studying reliability properties of k-out-of-n systems composed of
components with not necessarily independent and not necessarily identically distributed discrete
lifetimes. I will also explain how some of these methods can be generalized to the class of coherent
systems with exchangeable components.

First, I will show how to obtain a closed-form formula describing the joint probability mass
function of any subset of order statistics arising from discrete samples. This formula will be
a starting point to examine the following problems of interest:

• probability of a failure of a system at a given time;

• various residual lifetimes of a used system;

• residual lifetimes of components that survived system failure;

• moments of lifetime of a system;

• the distribution of the number of failed components at the time of a failure of the system;
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• inference based on failure times of components observed up to and including system failure.

Discussing the above mentioned problems I will show various probabilistic properties of discrete
order statistics, including characterizations and asymptotic behavior. I will also point out some
open problems.

My talk will be based on a series of papers [1]-[9].

References

[1] Davies K., Dembińska A. (2019). On the number of failed components in a k-out-of-n system
upon system failure when the lifetimes are discretely distributed. Reliab. Eng. Syst. Saf.
188, 47–61.

[2] Davies K., Dembińska A. (2024). On the residual lifetimes of dependent components upon
system failure. Submitted.

[3] Dembińska A. (2018). On reliability analysis of k-out-of-n systems consisting of heteroge-
neous components with discrete lifetimes. IEEE Trans. Rel. 67, 1071–1083.

[4] Dembińska A., Eryilmaz S. (2021). Discrete time series-parallel system and its optimal
configuration. Reliab. Eng. Syst. Saf. 215, 107832.

[5] Dembińska A., Goroncy A. (2020). Moments of order statistics from DNID discrete random
variables with application in reliability. J. Comput. Appl. Math. 371, 112703.

[6] Dembińska A., Jasiński K. (2021). Maximum likelihood estimators based on discrete com-
ponent lifetimes of a k-out-of-n system. TEST 30, 407–428.
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ponents from data colleted till failure of a k-out-of-n system. Manuscript in preparation.

[9] Dembińska A., Nikolov N.I., Stoimenova E. (2021). Reliability properties of k-out-of-n
systems with one cold standby unit. J. Comput. Appl. Math. 388, 113289.

[10] Navarro, J., Samaniego, F.J., Balakrishnan, N. and Bhattacharya, D. (2008). On the appli-
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Multivariate Gini’s indices: new developments and applications

Marco Capaldoa, Jorge Navarrob

aDipartimento di Matematica, Università degli Studi di Salerno
Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
bDepartamento de Estad́ıstica e Investigación Operativa, Facultad de Matemática

Universidad de Murcia, Murcia 30100, Spain.
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The Gini’s index was defined as twice the area between the egalitarian line and the Lorenz
curve and it quantifies how far a random variable and an its independent copy are. Some
generalizations of the Gini’s index have been introduced in the literature (see, for instance,
Sections 5.3.2 and 7.4.1 in Arnold and Sarabia [1]). This talk is devoted to illustrate new kinds
of multivariate Gini’s indices, defined and studied in Capaldo and Navarro [2]. In the proposed
settings the involved random variables are possibly dependent and not necessarily identically
distributed.

The interpretation of these new indices is pointed out by discussing various results and bounds,
most of them involving copulas, and by considering some illustrative examples. Aiming to
apply these measures in the context of reliability theory (see Navarro [3]), we provide a suitable
efficient version for any semi-coherent system. Empirical Gini’s indices are also considered for
data analysis.

References

[1] Arnold, B.C., Sarabia, J.M., (2018). Majorization and the Lorenz Order with Applications in
Applied Mathematics and Economics. Statistics for Social and Behavioral Sciences. Springer.

[2] Capaldo, M., Navarro, J., (submitted, 2023+). New multivariate Gini’s indices. ArXiv
preprint https://arxiv.org/abs/2401.01980

[3] Navarro, J., (2022). Introduction to System Reliability Theory. Springer.
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Distribution-Free Test on Treatment Effects with Multivariate
Ordered Data: a Biostatistical Application

Stefano Bonninia
aUniversity of Ferrara, Via Voltapaletto 11, 44121 Ferrara (Italy)

Back to schedule

1 Introduction

This work consists of the application of a distribution-free test, based on the permutation ap-
proach, to a multivariate biostatistical problem. The goal of this study is to test the effect of
“assisted motor activity” (AMA) on the health of patients affected by “low back pain” (LBP),
“hypertension” and “diabetes”. AMA is a treatment based on specific physical exercises aimed
at restoring motor limitations caused by various factors. Specifically, the goal is to test whether
AMA determines an improvement in the functionality and perceived health status of comorbid
patients at the significance level α = 0.05.

This is a case-control experiment with a comparative evaluation between two independent sam-
ples. The samples are a treated group of 27 patients (group 1) and a control group of 20 patients
(group 0). The health status of the two groups at time t0 (before the treatment) does not differ.
They are compared at time t1, after the treatment for group 1. The health status is measured
according to 13 different binary or ordinal outcomes. The null hypothesis of the test consists of
the equality in the distribution of the multivariate responses of group 1 and group 0, whereas,
under the alternative hypothesis, the health status of the treated patients is better. Therefore,
the alternative hypothesis is directional and we are in the presence of a multivariate stochastic
dominance problem for ordinal variables. Since being jointly over 60 years old and affected by
LBP may represent a risk factor, a confounding factor S is defined such as S = 1 if the patient
is over 60 years old and affected by LBP, and S = 0 otherwise.

The approach proposed in this work is based on the method of Combined Permutation Test
(CPT) [1, 2], which is suitable for multivariate categorical data and for the presence of the
confounding factor. To avoid confounding effects by comparing similar patients in terms of the
confounder, stratification of the groups and intra-stratum permutation univariate two-sample
tests are carried out. Given the number of components of the multivariate response (13) and the
number of strata (2), the number of such partial tests is 26. The combination of the p-values
of the partial tests, according to the CPT approach, provides a test statistic suitable for the
overall problem.

Section 2 is dedicated to the description of the data and of the formal problem, Section 3 includes
a brief description of the proposed method, whereas in Section 4 the results are reported and
commented.

2 Data and Problem

The components of the ordinal multivariate response variable are listed below:

• X1: Self-assessment on having health issues (1-yes, 2-partial, 3-no)

• X2: Self-assessment on the ability to perform moderate physical activity (1-no, 2-partial,
3-yes)

• X3: Self-assessment on the difficulty in stair climbing (1-yes, 2-partial, 3-no)

• X4: Physical performance lower than expected in the last month (1-yes, 2-no)
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• X5: Need to limit some types of activity in the last month (1-yes, 2-no)

• X6: Physical perf. lower than expected due to emotional state in the last month (1-yes,
2-no)

• X7: Decrease of mind concentration in the last month due to emotional state (1-yes, 2-no)

• X8: Difficulty in daily activities due to pain in the last month (1-yes, 2-no)

• X9: Frequency of calm and serenity in the last month (1-never, 2-rarely, 3-every once in a
while, 4-sometimes, 5-always)

• X10: Frequency of feeling full of energy in the last month (1-never, 2-rarely, 3-every once
in a while, 4-sometimes, 5-always)

• X11: Frequency of feeling discouraged and sad in the last month ((1-always, 2-sometimes,
3-every once in a while, 4-rarely, 5-never)

• X12: Frequency of negative effects of health and emotional state on social activities in the
last month (1-always, 2-sometimes, 3-every once in a while, 4-rarely, 5-never)

• X13: Self-assessment of the level of stress (1-very high, 2-high, 3-average, 4-moderate,
5-very low)

Let X1,sv and X0,sv represent the vth outcome or, equivalently, the vth component of the mul-
tivariate response, in the stratum s for the treated and the control group respectively, with
s = 0, 1 and v = 1, . . . , 13. The partial problem related to the vth outcome and the stratum s

consists of testing H0,sv : X1,sv
d
= X0,sv versus H1,sv : X1,sv >

d X0,sv, where
d
= and >d denote

equality in distribution and stochastic dominance respectively. Such hypotheses may be written
as

H0,sv : F1,sv(x) = F0,sv(x), ∀x (1)

and
H1,sv : F1,sv(x) ≤ F0,sv(x), ∀x and ∃x : F1,sv(x) < F0,sv(x) (2)

where Fj,sv(x) denotes the cumulative distribution function of Xj,sv, with j = 0, 1.

Under the null hypothesis, for the vth outcome, both the intra-stratum partial null hypothesis
H0,1v and H0,0v are true, thus H0,v : H0,1v ∩ H0,0v. Similarly, H1,v : H1,1v ∪ H1,0v, with obvi-
ous notation. Consequently, the overall null and alternative hypothesis of the problem can be
denoted by H0 : ∩13

v=1H0,v and H1 : ∪13
i=1H1,v respectively.

3 Methodological solution

Let f1j,sv and f0j,sv denote the absolute frequency of the jth ordered category (i.e. the number of
statistical units on which such a category is observed) within the stratum s for the vth variable
in the treated and control group respectively. Hence, the cumulative frequencies in the treated
and control group can be denoted by F1j,sv =

∑j
r=1 f1r,sv and F0j,sv =

∑j
r=1 f0r,sv respectively.

For the partial test concerning H0,sv vs H1,sv, the following Anderson-Darling type test statistic
may be used

Tsv =

kv−1∑
j=1

(F0j,sv − F1j,sv)[F·j,sv(ns − F·j,sv)]
−0.5, (3)

where kv is the number of ordered categories of the vth variable, F·j,sv = F0j,sv + F1j,sv and
ns = F·kv ,sv. To solve the testing problem related to the vth variable, i.e. to test H0,v vs H1,v, a
first-level combination of the significance level functions of the partial tests of the two strata may
be applied. If Lsv(tsv) = P [Tsv ≥ tsv|X] is the significance level function for the sth stratum and
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the vth variable given the observed dataset X, for any tsv ∈ R, according to the permutation
distribution, a suitable combined test statistic for the vth variable is

T ′(t1v, t0v) = max[(1− L1v(t1v)(1− L0v(t0v)], (4)

for any couple of values (t1v, t0v) ∈ R2.

Similarly, to solve the general multivariate problem, a second-level combination may be carried
out. Let L′

v(t
′
v) = P [Tv ′ ≥ t′v|X] denote the significance level function of T ′

v for any t′v ∈ R.
The second-level combined test statistic is then

T ′′
v (t

′
1, . . . , t

′
13) = max[(1− L′

1(t
′
1), · · · , (1− L′

13(t
′
13)] (5)

Finally, H0 is rejected in favour of H1 if the p-value of the combined test is less than or equal to
the significance level α = 0.05, formally if L′′(t− obs′′) ≤ α, where L′′(t′′) = P [T ′′ ≥ t′′|X] with
t′′ ∈ R.

Probabilities and p-values are computed according to the null permutation distributions, ob-
tained by permuting the rows of X, because the exchangeability condition is satisfied under the
null hypothesis.

4 Results and conclusions

Since the overall p-value of the CPT is equal to 0.019, then we have empirical evidence in favour
of the hypothesis of significant effect of AMA on the health of patients. The proposed approach
represents a valid solution for the presented testing problem, whose complexity is due to the
multivariate nature of the response, the categorical data, the directional alternative hypothesis,
the presence of confounders and the small sample sizes.

References

[1] Pesarin F., Salmaso L. (2010). Permutation Tests for Complex Data. Theory, Applications,
and Software. Wiley, Chichester.

[2] Bonnini S., Corain L., Marozzi M., Salmaso L. (2014). Nonparametric Hypothesis Testing.
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Monotonicity of conditional expectations given the sum for
conditionally independent risks

Michel Denuita, Patricia Ortega-Jiméneza and Christian Y. Robertb

aISBA (LIDAM), UCLouvain, Belgium, bISFA, Université Lyon 1, France
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Stochastic monotonicity of random variables {Xi}ni given the value of their sum S =
∑n

i=1Xi is
referred to as “Efron’s monotonicity”. In particular, the study of the monotonicity of conditional
expectation mi(s) = E[Xi|S = s] has great relevance in signal processing or risk sharing, where
it is referred to as “non-sabotage” condition. In Denuit (2019), the monotonicity of mi(·) is

characterized by the ordering of S + X̃i − Xi and S in the likelihood ratio order, where X̃i

stands for the size-biased transform of Xi. In this work, we provide sufficient conditions for
this ordering when losses follow a common mixture model, a dependence structure often used in
practice. Several examples illustrate the applicability of the results. In particular, alternative
conditions are provided when considering an scale mixture model. The approach is applied to
the case where losses follow a multivariate Pareto distribution of Mardia’s type II and, for this
particular case, the exact expression of each participant’s contribution is obtained using divided
differences.

References

[1] Denuit, M. (2019). Size-biased transform and conditional mean risk sharing, with application
to P2P insurance and tontines. ASTIN Bulletin 49, 591–617.
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Prediction for Censored Lifetimes From Weibull Distribution in
Khamis and Higgins Step-Stress Model

Indrani Basaka
aPenn State Altoona, 3000 Ivyside Park, Altoona, PA 16601, USA
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We consider the problem of prediction of lifetimes of units from the Weibull distribution which
are censored under a simple step-stress testing experiment in this article. We considered pro-
gressive Type-II censoring as the form of censoring. Suppose a sample of n experimental units
are placed on a simple step-stress life test at an initial stress level of s1 and the stress level is
changed to s2 at a pre-fixed time τ . Then, the progressive Type-II censoring is implemented
in this experimental setting in the following manner. At the stress-level s1 and at the time of
the first failure, R1 of the n− 1 surviving units are randomly removed from the experiment. At
the time of the second failure, R2 of the n− 2−R1 surviving units are randomly removed from
the experiment, and similarly the test continues until time τ . Let N1 be the random number
of units that fail at stress level s1 and R(1) =

∑n1
i=1Ri be the total number of the censored

units at stress level s1 where n1 denotes the observed value of N1. Then, after time τ (at stress
level s2), at the time of the (n1 + 1)-th failure, Rn1+1 of the n − n1 − R(1) − 1 surviving units
are randomly removed from the experiment. At the time of the (n1 + 2)-th failure, Rn1+2 of
the n− n1 −R(1) −Rn1+1 − 2 surviving units are randomly removed from the experiment, and

similarly the test continues at the stress level s2. Let R(2) =
∑m

I=n1+1Ri be the total number
of the censored units at stress level s2 for a fixed value of m, the total number of observations.
Then, let N2 = m − N1 denotes the random number of units that fail at stress level s2. With
m, Ri (i = 1, 2, . . . ,m − 1) fixed in advance, the test continues until the m-th failure at which
time all the remaining n − m − R(1) −

∑m−1
i=n1+1Ri surviving units are removed. Note that

n = n1 + n2 + R(1) + R(2) where n2 denotes the observed value of N2. If R1 = · · · = Rn1 = 0,
Rn1+1 = · · · = Rm = 0, then n = m which corresponds to the complete sample situation. If
R1 = · · · = Rn1 = 0, Rn1+1 = · · · = Rm−1 = 0 and Rm = n −m, then it corresponds to the
conventional Type-II right censoring scheme. Note that the life-testing experiment is terminated
when the m-th failure occurs. With these notations, we will observe the following progressively
censored data:

t = (t1, . . . , tn1 , tn1+1, . . . , tm)

with t1 < . . . < tn1 < τ ≤ tn1+1 < . . . < tm.

Here, t is the observed values of the variable T = (T1, . . . , TN1 , TN1+1, . . . , Tm) denoting the m
Type-II progressively right censored order statistics from a population with pdf g(t) = g(t; θ)
where (t; θ) ∈ D = (R+)mΩ. Also, θ = (µ1, µ2, σ) and Ω is a 3-dimensional parametric space.

Cumulative Exposure Model (CEM) is the most popular model for analyzing step-stress data.
In case of the Weibull distribution, the CEM becomes quite complicated. Due to this reason,
Khamis and Higgins (1998) proposed a step-stress model based on the hazard functions and we
will use that model in this article. Khamis and Higgins [1] proposed the following step-stress
model for the Weibull distribution:

h(y) =


h1(y) = β

θ1
yβ−1 for 0 < y < τ

h2(y) = β
θ2
yβ−1 for τ < y <∞.

(1)
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The corresponding survival functions are:

F (y) =


F 1(y) = e

− yβ

θ1 for 0 < y < τ

F 2(y) = e
− yβ−τβ

θ2
− τβ

θ1 for τ < y <∞

(2)

and will be referred to as Khamis-Higgins model in this article.

In this article, we have derived two kinds of predictors – the Maximum Likelihood Predictors
(MLP) and the Conditional Median Predictors (CMP) for the survival times of unit Tj:Ri which
is the j-th order statistic out of a sample of size Ri; j = 1, 2, . . . , Ri; i = 1, 2, . . . ,m from the
Weibull distribution which are progressively Type II censored under a simple step-stress model.
These are derived in each of the following three cases:

Case 1: (1 ≤ n1 ≤ m− 1 and i = 1, . . . , n1)

Case 2: (n1 = m and i = 1, . . . , n1)

Case 3: (1 ≤ n1 ≤ m− 1 and i = n1 + 1, . . . ,m)

We will assume that, at the stress level s1, lifetimes have the distribution Weibull (β, θ1) with
the shape and scale parameters β and θ1 and at the stress level s2, lifetimes have the distribution
Weibull (β, θ2) with the shape and scale parameters β and θ2. We found that the prediction
methods become complicated for the original Weibull distribution and therefore we will be
working with the variable T = lnY where the hazard function and survival function of the
variable Y is given by (1) and (2) respectively. The probability density function g(t) and the
cumulative distribution function G(t) of T are given as

g(t) =


g1(t) = 1

σe
t−µ1

σ e−e
t−µ1

σ for t < ln τ

g2(y) = 1
σe

−[e
t−µ2

σ −e
ln τ−µ2

σ +e
ln τ−µ1

σ ] for ln τ < y <∞.

and

G(t) =


G1(t) = 1− e−e

t−µ1
σ for t < ln τ

G2(y) = 1− e−[e
t−µ2

σ −e
ln τ−µ2

σ +e
ln τ−µ1

σ ] for ln τ < y <∞.

where µ1 =
1
β ln θ1, µ2 =

1
β ln θ2 and σ = 1

β .

It is noted that these two predictors are quite easy to compute. These two prediction methods are
numerically illustrated using simulation studies along with generating Mean Squared Prediction
Error (MSPE) and Prediction Intervals (PI). We then compare the MLP and the CMP with
respect to MSPE and PI. We generated progressive Type-II censored data under the step-stress
setting and computed the values of MLP and CMP of Tj:Ri , having observed T . Then, we carried
out a numerical study to compare the performances of these MLP and CMP in terms of their
MSPEs. Derivations of the MSPEs of the MLP and CMP for the Extreme Value distribution
are complicated and so we used simulations to get those. Moreover, using simulation studies,
standard errors of these Tj:Ri were generated and the prediction intervals were constructed for
each of the predictors MLP and CMP in each situation.

It is found that the predicted values for CMP are generally closer to the actual values than the
corresponding predicted values for MLP. Simulation studies show that the prediction method
using CMP yield the closest prediction result particularly for larger sample size, larger number
of uncensored observations and for delayed censoring scheme as long as the number of predicted
observations is not small. It is also observed that the bias for the predicted MLP values decreases
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when the sample size increases. The MLPs have smaller MSPEs than the CMPs. But the ratio
of MSPEs of CMPs to the MSPEs of MLPs becomes closer to 1, in general, as sample size
increases.
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Accelerated life testing (ALT) is widely implemented to investigate lifetime performance within
a condensed timeframe by imposing higher stress levels, inducing failures much earlier than un-
der normal operating conditions. Step-stress ALT (SSALT) is a special type of ALT in which
the stress level applied to the tested units is incrementally adjusted at pre-defined time points
throughout the experiment. Statistical models for SSALT experiments, assuming a homoge-
neous population and considering various lifetime distributions or censoring schemes, have been
thoroughly discussed in the literature. However, SSALT for a heterogeneous population has
received little attention so far, especially in cases where the group membership is unknown and
the testing units form disjoint groups. This is a realistic scenario that occurs during a test in
practice, e.g., when the testing units separate into groups based on their response, corresponding
to different quality levels. Therefore, a heterogeneous SSALT (hSSALT) model with two stress
levels (simple hSSALT) for Type-II censored exponential lifetimes is introduced, under the cu-
mulative exposure (CE) assumption. To capture the underlying heterogeneity, a mixture model
approach is employed and the EM algorithm is adapted for the maximum likelihood estimation
of the model’s parameters. The associated asymptotic and bootstrap confidence intervals are
also provided. The validity of the proposed model and its advantage over the standard SSALT
model in the presence of heterogeneity, are proved and demonstrated via simulation studies.
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Recently, Berzborn, Cramer [2] applied hybrid censoring schemes to minimal repair and record
data using the idea of samples with replacement proposed in Epstein [4]. In particular, they
utilized the refined modularization/decomposition approach to conduct statistical inference (see
[3, 5]). For a recent review on hybrid censoring, see Balakrishnan et al. [1]. In particular, the
resulting decomposition can be used to derive the exact (conditional) distribution of the MLE
for exponentially distributed lifetimes and leads to compact expressions of the MLE’s density
function in terms of gamma distributions. Furthermore, it turns out that the distributions have
point masses at infinitely many points.

Applications of the approach to likelihood inference, Bayesian estimation, prediction, and Fisher
information are presented for minimal repair data/record data.
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Record statistics can be viewed as order statistics coming from a sample whose size is determined
by the values and the order of occurrence of the observations. The study of record statistics was
introduced by Chandler [3]. Since then, a large number of publications on records have appeared.
Let X1, X2, . . . be a sequence of independent and identically distributed random variables with
absolutely continuous distribution function (cdf) F and probability density function (pdf) f .
For n ≥ 1, we denote the order statistics of X1, X2, . . . , Xn by X1,n ≤ X2,n ≤ · · · ≤ Xn,n. Define

L(1) = 1, L(n+ 1) = min{j : j > L(n), Xj > Xj−1,j−1} and X(n) = XL(n),L(n), n ≥ 1.

The sequence {X(n)}({L(n)}) is called upper record statistics (times). For a comprehensive
discussion of records, see Arnold et al. [2], Ahsanullah [1] and Nevzorov [9]. The lower record
times and lower record statistics can be obtained from upper record times and upper record
values simply by replacing the original sequence of random variables by {−Xi, i ≥ 1} or (if
P (Xi > 0) = 1) by {1/Xi, i ≥ 1}.

In this article, we deal with the problem of estimating the parameters of a mixture of two
normal distributions based on record statistics. The maximum likelihood and Bayes’ methods
of estimation are used for this purpose. Statistical models and methods for survival data and
other time-to-event data are extensively used in many fields, including the biomedical sciences,
engineering, the environmental sciences, economics, actuarial sciences, management and social
sciences. Mixtures of two life distributions occur when two different causes of failure are present,
each with the same parametric form of life distributions. In recent years, the finite mixture of
life distributions have proven to be of considerable interest both in terms of their methodological
development and practical applications, see for example, McLachlan [7], McLachlan and Peel [8],
Everitt and Hand [4], and Tittertington, Smith and Makov [10].

A random variable X is said to follow a finite mixture distribution with k components, if the
pdf of X can be written in the form

f(x) =

k∑
i=1

pifi(x), (1)

where pi ≥ 0 (known as the ith mixing proportion) such that
∑k

i=1 pi = 1 and fi is a density
function (known as the ith component of the mixture), i = 1, 2, . . . , k.

The pdf and the cdf of a mixture of two normal distributions with same variances are given
respectively by

f(x; p, µ1, µ2, σ) = p · f1(x;µ1, σ) + (1− p) · f2(x, µ2, σ)

F (x; p, µ1, µ2, σ) = p · F1(x;µ1, σ) + (1− p) · F2(x, µ2, σ)

 (2)

where fi(x;µ1, σ), i = 1, 2, is the pdf pf the normal distribution function given by

fi(x;µ1, σ) =
1

σ
√
2π

exp

[
−(x− µi)

2

2σ2

]
(3)
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and Fi(x;µ1, σ) is the corresponding cdf of normal distribution. Here, we will denote the vector
of parameters of the mixture model by ψ = (p, µ1, µ2, σ).

The mixtures of normal distribution have many important applications. Details on mixtures of
normal distributions can be found in Everitt and Hand [4], Titterington et al. [10] and Lindsay [5].
Inferences based on mixtures of normal distributions are considered by many authors – the above
mentioned citations have a number of references. We derive the maximum likelihood estimator
of ψ. We obtain Bayes’ estimates of ψ using the approximate form of Lindley [6] based on lower
record statistics from the distribution given in equation (2). The Bayes’ estimates are computed
and compared with their corresponding maximum likelihood estimates based on Monte Carlo
simulation study.
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The Benjamini-Hochberg (B-H) procedure, introduced in [1], is a method for controlling the false
discovery rate in the problem of large-scale multiple testing, common in biomedical and genomic
research. A Beta-Uniform mixture is suggested in the literature for approximating the distribu-
tion of the tests p-values before the B-H adjustment, see for example [3] and [4]. In this talk,
different methods for estimating the unknown parameters of the proposed mixture are studied.
To evaluate the maximum-likelihood (ML) estimations, an expectation-maximization algorithm
is derived. As a more robust estimation technique, the maximum product of spacings (MPS)
method is considered. For finding the MPS estimations, an iterative minorization-maximization
algorithm, see [2], is tailored to fit the MPS framework under a general mixture model. In ad-
dition, the method of moments is applied and compared to the ML and MPS approaches. The
quality of the proposed estimation procedures is measured by their bias and mean squared er-
ror, computed via numerical simulations for various combinations of the sample size, proportion
parameter in the mixture and shape parameters of the beta distribution.

The talk is based on a joint work with Dean Palejev (Sofia University & Institute of Mathematics
and Informatics, Bulgarian Academy of Sciences).
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In this paper, the stress-strength reliability, Rs,k, of a multicomponent s-out-of-k system for ex-
ponentiated Gumbel distribution using progressive type II censoring scheme is considered. The
maximum likelihood estimation procedure and Bayesian estimation for Rs,k are discussed. Bayes
estimators are evaluated under both symmetric and asymmetric loss functions using Markov
chain Monte Carlo (MCMC) method. The asymptotic, percentile bootstrap and highest pos-
terior density (HPD) confidence intervals for Rs,k are obtained. A simulation study is carried
out for assessing the efficiency of the estimators developed in this paper. A real data is also
examined for illustrative purpose.

Keywords: Exponentiated Gumbel distribution; stress–strength reliability; progressive type II
censoring; maximum likelihood estimation; Bayesian estimation; MCMC method
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Development of k-out-of-n Failure Time Distributions in
Dependent Environments

Thomas A. Mazzuchia, Shahram Sarkania, and Lizanne Raubenheimerb
aDepartment of Engineering Management and Systems Engineering, George Washington University,

Washington DC, USA, bDepartment of Statistics, Rhodes University,Makhanda, South Africa

Back to schedule

In reliability theory, a k-out-of-n system is a system which functions if k out of n components
function (referred to as a G system) or a system that will fail if k of n components fails (referred
to as an F system). The use of k-out-of-n systems has become increasingly popular, espe-
cially for fault tolerant systems, and has applications in military, communications, electronics,
automotive, and data processing systems to name a few. The failure time distribution for a
k-out-of-n system can be constructed as the distribution for the (n + 1 − k)th order statistic.
This is easily constructed when components are independent; however, it is well known that
many of these systems are subject to common failure environments. Modeling common failure
environments can also be a difficult task, however, the Marshall-Olkin Multivariate Exponential
distribution has been used effectively in this capacity. We thus combine the two models and
develop expressions for the time to failure of a k-out-of-n system (or the n + 1 − kth order
statistic distribution) using a shock model approach. When n is even moderately large this
can pose a combinatorial challenging problem for the general Marshall-Olkin model. In most
k-out-of-n systems, however, identical components are assumed, and we may use the symmetric
or Binomial Failure Rate variate of the Marshall-Olkin Model to further reduce complexity.

Back to schedule



Coherent systems 1
OSD2024

Jun 11–14, 2024

Three-state discrete time k-out-of-n system and the number of
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We consider a three-state k-out-of-n system composed of components which lifetimes are mod-
elled by independent and identically distributed discrete random variables. Such system and
its components can function perfectly or totally fail, but can also enter a partial performance
state, when they may not fail completely but their efficiency is reduced. Based on the definition
introduced by Huang et al. (2000) we focus on the random vector representing the numbers
of components in each state, for which we derive its distribution. We illustrate the theoret-
ical results with numerical examples concerning systems with components with geometrically
distributed lifetimes following the Markov degradation process.
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Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
bDipartimento di Scienze Matematiche, Politecnico di Torino

Corso Duca degli Abruzzi, 24, I-10129 Torino, Italy.

Back to schedule

Distortion and copula functions play a special role for the detection of the system’s reliability
from their components’ reliability, by taking into account the system’s structure. Along this
line, in Capaldo et al. [1] we define (i) a new distortion function related to the ROC curve
and (ii) new families of distortions in order to deal with both series and parallel structures.
We study several pairs of reliability systems with one or more shared components, in the case
in which their lifetimes are independent and identically distributed or independent but not
identically distributed. The dependence that arises from sharing components is often described
by Marshall-Olkin copulas (see Li and Pellerey [3]). Moreover, the lifetimes analysis is enriched
by considering some distance measures related to the Gini’s mean difference and its new recent
generalizations (see Capaldo and Navarro [2] and references therein).
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We show that some distributions play a central role in the preservation of aging classes under
the formation of semicoherent (or mixed) systems. Therefore, if an aging class of the com-
ponent lifetimes is preserved in a system for the key distributions, then it is preserved for all
distributions from the class. In the main aging classes (i.e., Increasing/Decreasing Failure Rate,
Increasing/Decreasing Failure Rate Average, New Better/Worse than Used), the exponential
distribution is crucial becasue it represents units without aging (with the lack of memory prop-
erty). In other classes (e.g., Increasing/Decreasing Density) the uniform distribution is the key
one. These distributions lead to mathematical properties that can also be used to determine
whether an aging class of components lifetimes is inherited by a specific system. The results
stated here can be applied to systems with independent or dependent identically distributed
components.
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In this talk, I consider coherent systems composed of identical yet possibly dependent com-
ponents whose dependence structures are modeled via copulas. The main focus is on residual
lifetimes of components that survived the failure of the system. I provide general formula describ-
ing the joint distribution of these residual lifetimes. I then look more closely at this distribution
in the special case of Clayton copula and standard exponential marginals. Finally I present
some numerical results and observations.
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Measures of dispersion are among the first topics covered in any introductory statistics course
and are routinely used in all areas of application. The crucial defining property of a dispersion
measure τ requires that it preserves some corresponding stochastic order ⪯ in the sense that
τ(F ) ≤ τ(G) whenever F ⪯ G. The usual choice for the stochastic order underlying dispersion
measures is the so-called dispersive order, which requires that all interquantile ranges of G are
larger than the corresponding ranges of F . This is the strongest commonly used order of disper-
sion and is preserved by all well-known measures of dispersion. However, it is not meaningfully
applicable to discrete distributions. This means that there is no theoretical guarantee that
classical dispersion measures actually quantify the dispersion of a distribution. In this talk, we
examine this problem in more detail and propose a solution in the form of a discrete dispersive
order. Its construction is directly informed by key properties of the original dispersive order
and its meaningfulness is illustrated using prototypical examples. After establishing a number
of parallels between the original dispersive order and its discrete analogue, the compatibility
of the discrete order with a number of popular dispersion measures is examined. This ensures
that the application of these measures to discrete distributions is meaningful, with the notable
exception being the interquantile range. Finally, the behaviour of our proposed discrete order
on well-known families of discrete distributions is analyzed.
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Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random samples that refer to a
specific quantitative attribute in two different populations, say X and Y . Conditions on X and
Y , i.e. on the marginal distributions of X and Y, such that the estimators of different variability
measures referring to X and Y are ordered in the usual stochastic order or in the increasing
convex order, rather than only in the simple expectation order, have been described in Baz et
al. (2024a). In there, the same dependence between the components of the two samples X and
Y was mainly assumed (with the independence as a special case).

In this talk we consider the case where different structures of dependence exist between the
components of X and between the components of Y. For this case, conditions such that esti-
mators of variability measures are stochastically ordered are described, pointing out the effects
of the dependence in such estimators. The results presented here, mainly based on stochastic
comparisons among the vectors X = {|Xi − Xj |}i,j∈{1,...,n} and Y = {|Yi − Yj |}i,j∈{1,...,n}, also
generalize in the multivariate setting some known results dealing with the comparison between
absolute differences of identically distributed random variables.
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Our work proposes a variance-based measure of importance for coherent systems with depen-
dent and heterogeneous components. The particular cases of independent components and
homogeneous components are also considered. We model the dependence structure among the
components by the concept of copula. The proposed measure allows us to provide the best es-
timation of the system lifetime, in terms of the mean squared error, under the assumption that
the lifetime of one of its components is known. We include theoretical results that are useful to
calculate a closed-form of our measure and to compare two components of a system. We also
provide some procedures to approximate the importance measure by Monte Carlo simulation
methods. Finally, we illustrate the main results with several examples.
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1 Motivation

A recent survey of the ranking literature conducted by Yu et al. [4] highlights the absence of
consideration for the time perspective in rankings and emphasizes the need for research in this
direction. In response to this call, we introduce our paper Holý and Zouhar [2], which aims to
address this gap and contribute to the limited body of literature on time-varying ranking data.
In contrast to existing models for time variation in rankings, our approach endeavors to offer a
flexible tool for modeling time-varying ranking data akin to the autoregressive moving average
(ARMA) model employed for continuous variables.

2 Dynamic Score-Driven Ranking Model

Let us consider a set of N items Y = {1, . . . , N}. Our main object of interest is a complete
permutation of this set, i.e. a ranking, yt = (yt(1), . . . , yt(N)) at time t = 1, . . . , T . Element
yt(i) represents the rank given to item i at time t, while rtht represents the item with rank r at
time t.

We assume that a random permutation Yt follows the Plackett–Luce distribution. See, e.g.,
Plackett [3] for more details. The probability of a complete ranking yt is given by

P [Yt = yt|ft] =
N∏
r=1

exp frtht ,t∑N
s=r exp fstht ,t

, (1)

where ft = (f1,t, . . . , fN,t)
′ are the worth parameters of the items at time t.

Let us assume that individual worth parameters linearly depend on covariates x1, . . . , xM and
evolve over time according to the recursion

fi,t = ωi +
M∑
j=1

βjxi,t,j + α∇i (ft−1|yt−1) + φfi,t−1, i = 1, . . . , N, t = 1, . . . , T, (2)

where ωi is the individual fixed effect of item i, βj is the regression parameter on xj , α is the
score parameter, φ is the autoregressive parameter, xi,t,j is the value of xj for item i at time t,
and ∇i (ft−1|yt−1) is the lagged score given by

∇i (ft|yt) = 1−
yt(i)∑
r=1

exp fi,t∑N
s=r exp fsth,t

, i = 1, . . . , N, t = 1, . . . , T. (3)

The score is the gradient of the log-likelihood function and represents the direction for improving
the fit of the distribution to a specific observation. Our model belongs to the class of score-driven
models, also known as generalized autoregressive score (GAS) models and dynamic conditional
score (DCS) models, introduced by Creal et al. [1].

The parameters of the model are estimated by the maximum likelihood method. The standard
errors of the parameters are obtained by the empirical Hessian of the log-likelihood.
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Table 1: Selected estimates for the Ice Hockey World Championships data (1998–2019).
Mean-Reverting Static Random Walk

Home ice (β̂) 0.227 0.171 0.099
(0.258) (0.262) (0.188)

Score parameter (α̂) 0.392∗∗∗ 0.343∗∗∗

(0.083) (0.058)

Autoregressive parameter (φ̂) 0.506∗∗∗

(0.149)

log-likelihood -611.195 -625.800 -625.425
AIC 1274.391 1299.600 1300.851

3 Application to Ice Hockey Rankings

We demonstrate the use of our model using data on the results of the Ice Hockey World Cham-
pionships. The permutation yt represents the final ranking of teams for year t. We also include
a dummy variable indicating the host country of the championships in a given year. We com-
pare the static, mean-reverting, and random walk specifications of the model. Main results are
summarized in Table 1.
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One of the main characteristics of temperature data is that they exhibit asymmetries since
the records collected by stations correspond to maximum daily temperature values. Hence,
temperature data are far away from normality so non-normal multivariate distributions must
be employed to model and capture their non-normal features. Scale mixtures of skew normal
(SMSN) distributions are flexible models that account for asymmetry and tail weight behavior
simultaneously. This work is concerned with the stochastic comparison of vectors belonging to
the scale mixtures of skew normal family. Several stochastic orders are proposed to carry out tail
weight stochastic comparisons of SMSN vectors. We also investigate the relationships between
the proposed orders and the non-normality parameters of some popular distributions within the
SMSN family. Our theoretical results are useful to address the stochastic comparison of extreme
temperature records; we illustrate them with an application to a real study about summer
temperatures in the Iberian Peninsula during the last century by using the multivariate skew-t
distribution. The conclusions of this application will shed light on the evolution of extreme
summer temperature records for such a long period.

The data used in this work come from the Spanish TEmperature At Daily scale (STEAD)
dataset [2] which can be downloaded from the Spanish CSIC repository located at the web-
site: https://digital.csic.es/handle/10261/177655. All the theoretical details about the findings
presented in this work appear in a recent contribution by both authors [1].
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Household income is one of the most important economic categories depending on various factors,
in particular on the level of education of the head of the household. Therefore, the question
arises how the level of education affects the distribution of household income. A lot of research
has been directed at describing empirical distributions by using a theoretical model. In the
literature there are proposals for various types of mathematical functions. In 2010 Zenga [1]
proposed a new three-parameter model for economic size distribution which possesses interesting
statistical properties that can be used to model income, wealth and financial variables.
The probability density function f(x;µ, α, θ), (µ > 0, α > 0, θ > 0) of the Zenga distribution for
non-negative variables has the form:

f(x;µ, α, θ) =


1

2µB(α; θ)

(
x

µ

)−3/2 ∫ x
µ

0
kα−1/2(1− k)θ−2dk for 0 < x < µ

1

2µB(α; θ)

(µ
x

)3/2 ∫ µ
x

0
kα−1/2(1− k)θ−2dk for x > µ

(1)

where B(α; θ) is the beta function.

In this model µ is the scale parameter and is equal to the expected value, α and θ are shape
parameters that the inequality depends on. Studies performed in various countries show that the
Zenga distribution exhibits high conformance to the empirical distributions of incomes [1, 2, 3].
The parameters estimates of the Zenga distribution were obtained by means of the D’Addario’s
invariants methods.

The Zenga distribution was applied to the estimation of point and synthetic inequality measures.
We analyzed the distribution of household income and income inequality, taking into account the
education level of the head of the household using the Zenga model and the decomposition of the
Theil coefficient, which is an important and current socio-economic problem. Household income
data from the European Central Bank (ECB)-Eurosystem Household Finance and Consumption
(HFCS) wave 2021 were used to describe and analyze the economic situation of household income
of people with different levels of education in selected European countries with different economic
models. The empirical analysis results unveiled both commonalities and significant distinctions
among the countries. Conducted empirical research on various samples significantly complements
the existing knowledge on this topic.
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If X1, . . . , Xn are the random variables representing some sample values, the associated (increas-
ing) ordered values X1:n ≤ · · · ≤ Xn:n are know as order statistics. Several properties for them
in the case of IID (independent and identically distributed) samples can be seen in [1].

If X1, . . . , Xn represent the component lifetimes of a system, then the ordered values X1:n ≤
· · · ≤ Xn:n represent the lifetimes of k-out-of-n systems (systems that works when at least k
components work). In this case, the Xs can be dependent and they can be heterogeneous, that
is, they are not ID.

In both cases, to get stochastic comparisons for them is a relevant topic. The main stochastic
orders are the stochastic (st), hazard rate (hr) and likelihood ratio (lr) orders. The main
properties for them can be seen in [5].

In some case the order statistics are ordered (as expected). However, this is not always the
case. In this talk we will present conditions to get stochastic comparisons in these orders for
the order statistics. The conditions will depend on the copula C that models the dependence
between X1, . . . , Xn. The conditions will be connected with dependence properties of C. The
talk is based on the results published in [2, 3, 4].
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For an arbitrary number of generalized order statistic and arbitrarily fixed its parameters we
set out sharp upper and lower bounds on the variance of generalized order statistic valid for all
baseline distributions with finite second moments. The bounds are measured in the scale units
being the variances of baseline distributions. We also discuss the implications of these results for
the specific submodels of the generalized order statistics model: classic order statistics, record
values and progressively censored type II order statistics.
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1 Overview

In randomized controlled clinical trials, the post-stratification causal framework is used to study
the causal relationship among the treatment, an intermediate outcome and the long-term out-
come. It requires modeling the distribution of the intermediate outcome given a baseline co-
variate under a monotonicity assumption, that is, responders to the control would respond to
the experimental treatment [1]. Estimation with a discrete covariate under the monotonicity
assumption is well understood. However, regression analysis with a binary intermediate outcome
and a continuous covariate under the monotonicity restriction has not been established. Here
we proposed a few nonparametric methods to predict the binary potential outcomes given a
continuous covariate under the monotonicity restriction, including the logistic regression with
P-splines and a weighted least square kernel estimator. We examined the asymptotic properties
and finite-sample performance of the proposed kernel estimator and generalized it to settings
with multiple continuous covariates in an application to neoadjuvant trials on early-stage breast
cancer.

2 Main Results

Consider variables (X,Z, S), where Z, S ∈ {0, 1} and X is a continuous variable. The observed
data are {xi, zi, si; i = 1, 2, . . . , n}.We are interested in the following nonparametric regression:

πz(x) = Pr[S = 1|X = x, Z = z] (1)

subject to the restriction: π0(x) ≤ π1(x), for all x.

If you need to state theorems or other mathematical bodies of the sort, please use the predefined
environments:

Theorem 1 Under some regularity conditions, for any x, consider the following weighted least
square kernel estimates:

(π̃0(x), π̃1(x)) = argminβ0,β1

∑
i:zi=0

(si − β0)
2Kh(xi − x) +

∑
i:zi=1

(si − β1)
2Kh(xi − x), (2)

where Kh(t) =
1
hK( t

h),K(·) is a kernel function. Denote:

π̂z(x) =

∑
i:zi=zKh(xi − x)si∑
i:zi=zKh(xi − x)

, z = 0, 1. (3)

With the restriction: π0(x) ≤ π1(x), the weighted least square kernel estimates are:

π̃z(x) =

{
π̂z(x) if π̂0(x) ≤ π̂1(x)
π̂x otherwise

where π̂(x) =
∑n

i=1 Kh(xi−x)si∑n
i=1 Kh(xi−x)

is the pooled Nadaraya-Watson estimator.
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Introduction

We consider the problem of estimation and tests using data that are contaminated by additive
noise {εi}ni=1. Actually, due to the nature of the experimental environment or the measuring
tools, the random process {Xi}ni=1 is not available for direct observation. Instead of Xi, we only
observe the random variables Yi given by

Yi
△
= Xi + εi, i = 1, . . . , n. (1)

Model (1) is called a convolution and the problem of estimating with this model occurs in
various domains. This model has been studied in Experimental Sciences. For example, Biological
Organisms (see [9]); Communication Theory (see [6]) and Applied Physics (see [10]).

The literature abounds of work devoted to the study of the p.d.f. in convolution problems. [12]
proposed a consistent estimator for the density based on grouped data for some cases of error
density. [8] considered the estimation of the multivariate probability density functions under
some structures of dependence. [11] used the Moving Polynomial Regression (MPR) to smooth
the empirical distribution function estimator. [7] considered the asymptotic uniform confidence
bands.

We study the deconvolution under the assumption that characteristic function ϕε of the mea-
surement error {εi}ni=1 decays algebraically at infinity i.e:

|t|β |ϕε(t)| →
|t|→+∞

β1 for some β > 0 and β1 > 0.

Here, the error is called ordinary smooth. The parameter β is called the order of the noise
density fε (x). Actually, it has a direct impact on the rate of convergence of the function to be
estimated. The ordinary smooth distribution covers in particular the case of Gamma, Double
Exponential, and Symmetric Gamma densities fε(x).

The goal here is to test the concavity of the function to be estimated. It is important to test this,
for example, if the target function is a concave distribution function FX , then, the distribution
function of the observed variable {Yi = Xi + εi}ni=1 can be non-concave. Take the example where
Xi and εi are uniform then FX is concave but FY is triangular (not concave).

To test this, we measure the distance between the estimator of the target function and its least
concave majorant (LCM for short). We give the definition of the LCM operator.

Definition 1 Given a convex interval I ⊆ R+, the LCM over I is the operator MI : ℓ∞I → ℓ∞I
that maps each function θ ∈ ℓ∞I to MIθ (x) where

MIθ (x) := inf {θ (x) : θ is a concave function lies in ℓ∞I and θ ≤ θ on I} , x ∈ I.

For convenience, we write M to refer to MR+

To have the asymptotic distribution of the test statistic, one should use the well-known Func-
tional Delta Method (see, e.g., van der Vaart and Wellner [3] ). This approach requires the
operator under study to be Hadamard differentiable. However, this approach (Functional Delta
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Method) is more widely applicable under Hadamard directional differentiability, as demonstrated
by Shapiro [5] (see Thm. 2.1). The following is the definition of a Hadamard directionally dif-
ferentiable map, according to Shapiro ([4], [5]) and Bonnans and Shapiro [2].

Definition 2 Let A and B be topological vector spaces of finite dimension over R provided
respectively with the norms ∥·∥A and ∥·∥B. A map ϕ : A→ B is said to be Hadamard directionally
differentiable at θ ∈ A tangentially to A0 ∈ A if there exists a map ϕ′θ : A0 → B such that

lim
n→∞

∥∥∥∥ϕ (θ + tngn)

tn
− ϕ′θ (g)

∥∥∥∥
B

→ 0,

for all g ∈ A0 and all g1, g2, . . . ∈ A and t1, t2, . . . ∈ R+ such that ∥gn − g∥A → 0 and tn ↓ 0.
The map ϕ′θ (g) is called the Hadamard directional derivative of ϕ at θ tangentially to A0
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Given samples from two non-negative random variables, we propose a new class of nonpara-
metric tests for the null hypothesis that one random variable dominates the other with respect
to second-order stochastic dominance. These tests are based on the Lorenz P-P plot (LPP),
which is the composition between the inverse unscaled Lorenz curve of one distribution and the
unscaled Lorenz curve of the other. The LPP exceeds the identity function if and only if the
dominance condition is violated, providing a rather simple method to construct test statistics,
given by functionals defined over the difference between the identity and the LPP. We determine
a stochastic upper bound for such test statistics under the null hypothesis, and derive its limit
distribution, to be approximated via bootstrap procedures. We also establish the asymptotic va-
lidity of the tests under relatively mild conditions, allowing for both dependent and independent
samples. Finally, finite sample properties are investigated through simulation studies.
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Let Y represent the strength variable effected by the stress variables X1 and X2. Assume that
three samples are independent. Thus, R = P (X1 < Y < X2) denotes the reliability where
the strength Y should not only be greater than stress X1 but also smaller than stress X2 [3].
Estimation of R has extensive applications in various areas since it provides a useful measure
of differences between or among populations. In this study, the Weibull distributions with
common shape parameters and different scale parameters are assumed to be the underlying
distributions of the components. These three components are assumed to be performed under
joint progressive type-II censoring scheme introduced by Balakrishnan et al. [1]. Further, a
natural constraint on the scale parameters such as λ1 < λ2 < λ3 considered. Thus, the inference
of R is obtained under jointly progressive censored data under order-restricted scale parameters.
The maximum likelihood estimations are obtained from the findings of the generalized isotonic
regression problem defined by Brunk et al. [2]. Additionally, the Bayesian estimation is obtained
under gamma-Dirichlet prior distribution performing the importance sampling algorithm. The
approximate confidence intervals, including asymptotic and highest posterior density intervals,
are also derived for R.
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Tests for trend are common in practice when several independent groups with increasing doses
are investigated for example in clinical trials or agricultural field studies. In order to construct a
trend test one can combine a non-directional heterogeneity test with the rank-order information
under the alternative (Rice and Gaines, 1994). Neuhäuser and Hothorn (2006) proposed two
modifications of this ordered heterogeneity test procedure. On the one hand, the maximum
correlation out of the 2k−1 − 1 possibilities under the alternative can be used instead of a single
ordering such as (1, 2, . . . , k), where k denotes the number of groups. On the other hand, the
mean ranks of the groups rather than the sample means can be used in order to determine the
observed ordering of the groups. These two modifications can increase the power of the ordered
heterogeneity test. Moreover, the modified ordered heterogeneity tests are quite robust and can
detect all patterns that are possible under the alternative with relatively high power.

The modified ordered heterogeneity tests can be extended to many trend test situations when
using permutation or bootstrap for inference. In particular, we shall present results for non-
normal distributions and heterogeneous variances.
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The four-parameter kappa distribution, as defined by Hosking [1], includes four distinct extreme
value models and has extensive applications in various fields such as environmental sciences and
hydrology. As a special case, the three-parameter kappa distribution, also referred to as K3D,
is previously overlooked in the literature until Jeong [2] undertook a comprehensive study on
it. In this talk, we consider the K3D for order statistics point of view and obtain moments of
order statistics from it. Moreover, we derive some useful recurrence relations for calculating
both single and product moments of order statistics. As an application of these relations, we
use these calculations to derive the best linear unbiased estimator (BLUE) for estimating the
location and scale parameters of the distribution. Finally, we demonstrate a representative data
fitting to see the performance of the BLUE’s versus the maximum likelihood estimates.
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In this study, we introduce a novel approach to statistical inference for Completely Randomized
Design (CRD) by employing post-stratification of experimental units. After the experiment is
completed, our method involves randomly pairing experimental units (EUs) subjected to two
different treatments, identified as treatment h and treatment h′. Each pair of EUs is ranked based
on their inherent variation. Ranking process is conducted blindly to the treatment assignments
to prevent bias. Subsequently, these ranked sets are divided into two distinct categories: one
where the higher rank corresponds to treatment h and the lower rank to treatment h′, and the
other with the reverse treatment allocation. This post-stratification is performed for all possible
pairs of treatments (h and h′, h < h′). By ranking within each pair, we induces positively
correlated judgment order statistics between response variables from EUs receiving treatments
h and h′, thereby facilitating a significant reduction in the variance of the estimated contrast
parameter (∆ = µh − µh′), where µh and µh′ represent the mean of treatments h and h′,
respectively. Our findings demonstrate a substantial variance reduction in the estimation of the
contrast parameter. We also develop a multiple comparison procedure for pairwise differences
of contrast parameters.
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1 Introduction

We study multiple orderings of multidimensional data, that is, independent copies of a random
vector are sequentially ordered in ascending order of several of its components. The result is
a sequence of vectors of higher dimension, consisting of induced order statistics (concomitants)
corresponding to different orderings. Our Lemma 1 deals with weak convergence of random
fields under consideration to corresponding Gaussian random fields. Lemma 2 describes weak
convergence of the process of sequential sums of random vectors under different orderings to a
centered Gaussian process of corresponding dimension. Next, we assume a linear relationship of
the components, use standard least squares estimates to compute regression residuals, that is,
the differences between response values and the predicted ones by the linear model. We prove
Theorem 3 about weak convergence of the process of sums of of regression residuals under the
necessary normalization to a centered Gaussian process.

Regression analysis deals with models for the linear dependence of one variable (response) on
other variables (regressors). However, standard regression analysis methods do not include
methods of detecting that the proposed linear model is incorrect entirely. If the model is incorrect
then it must either be completely discarded or substantially modified. This is a change points
situation of presence of structural breaks in a data. MacNeill (1978) proposed a change point
test for time series, and Bishoff (1998) significantly relaxed the assumptions of MacNeill. An
analysis of results in this direction can be found in Csorgo and Horváth (1997, Chapters 2 and 3)
and MacNeill et al. (2020). Kovalevskii (2020) proposed tests for matching of regression models
using data ordering by one of the regressors. We propose a statistical test that uses multiple
ordering of data. Proofs can be found in Chebunin and Kovalevskii (2021).

2 Induced order statistics

Let (Xi,Yi), i = 1, 2 . . . , be the independent copies of a random vector (X,Y) such that
X = (X(1), . . . , X(d1)) takes values in [0, 1]d1 , Y takes values in Rd2 . The distribution function
(copula) of X is C(u) = P(X ≤ u) = P

(
X(1) ≤ u(1), . . . , X(d1) ≤ u(d1)

)
, u = (u(1), . . . , u(d1)) ∈

[0, 1]d1 .

We assume that there is copula density c(u), that is, C(u) =
∫
v≤u c(v)dv, v ∈ [0, 1]d1 . We

define the weak convergence of random fields in the d1-dimensional analog of Skorohod metrics,
see Straf (1972). Davydov & Zitikis (2008) proposed a method of proving this convergence. We
use the symbol ⇒ to denote the weak convergence of random fields in the sense that has been
mentioned above. We use the same symbol for the weak convergence of random variables and
the weak convergence of stochastic processes in the Skorohod topology. Let

Qn(u) =
n∑

j=1

Yj1 (Xj ≤ u) =

n∑
j=1

Yj1
(
X

(1)
j ≤ u(1), . . . , X

(d1)
j ≤ u(d1)

)
, u ∈ [0, 1]d1 ,

m(u) = E(Y | X = u), u ∈ [0, 1]d1 ,
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and

f(u) =

∫ u

0
m(v)c(v)dv,

σ2(u) = E
{
(Y −m(X))T (Y −m(X)) | X = u

}
be the conditional covariance matrix of Y and σ(u) be the positive definite matrix such that
σ(u)Tσ(u) = σ2(u). The following Lemma 1 generalizes the result of the first part of Theo-
rem 2.1(1) by Davydov and Egorov (2000) to random fields.

Lemma 3 If E∥Y∥2 <∞ then Q̃n = Qn−f√
n

⇒ Q, a centered Gaussian field with covariance

K(u1,u2) = EQT (u1)Q(u2) =

∫ min(u1,u2)

0
σ2(v)c(v)dv

+

∫ min(u1,u2)

0
mT (v)m(v)c(v)dv −

∫ u1

0
mT (v)c(v)dv

∫ u2

0
m(v)c(v)dv, u1, u2 ∈ [0, 1]d1 .

Denote X
(k)
n,1 ≤ X

(k)
n,2 ≤ · · · ≤ X

(k)
n,n, 1 ≤ k ≤ d1, the order statistics of the k-th column of matrix

X, and Y
(k)
n,1,Y

(k)
n,2, . . . ,Y

(k)
n,n the corresponding values of the vectors Yi. The random vectors(

Y
(k)
n,i , i ≤ n

)
are called induced order statistics (concomitants). Let ek,t = (1, . . . , 1, t, 1, . . . , 1)

the vector in [0, 1]d1 with k-th coordinate being t and other coordinates being 1.

Lemma 4 If E∥Y∥2 < ∞, m ≡ 0 then Z̃n = Zn√
n

⇒ Z, a centered Gaussian (d1 × d2)-

dimensional process with covariance matrix function EZT (t1)Z(t2) = (K(ek1,t1 , ek2,t2))
d1
k1,k2=1,

K(ek1,t1 , ek2,t2) = EQT (ek1,t1)Q(ek2,t2) =

∫ min(ek1,t1 ,ek2,t2 )

0
σ2(v)c(v)dv.

Let (Xi, ξi, ηi) = (Xi1, . . . , Xid1 , ξi1, . . . , ξi,d2−1, ηi) be independent and identically distributed
random vector rows, i = 1, . . . , n. All components of a raw can be dependent and Xi1, . . . , Xid1

have a copula (so their marginal distributions are uniform on [0, 1]) with a density c(v). Rows
(Xi, ξi, ηi) form matrix (X, ξ, η). We assume a linear regression hypothesis H0:

ηi = ξiθ + εi =

d2−1∑
j=1

ξijθj + εi, (1)

{εi}ni=1 and {(Xi, ξi)}ni=1 are independent, E ε1 = 0, Var ε1 > 0. Vector θ = (θ1, . . . , θd2−1)
T and

constant Var ε1 are unknown. We consider d1 orderings of rows of the matrix (X, ξ, η) in acsend-
ing order of columns of X. The result of d1 orderings is a sequence of d1 matrices (X(j), ξ(j), η(j))

with rows (X
(j)
i , ξ

(j)
i , η

(j)
i ) = (X

(j)
i1 , . . . , X

(j)
id1
, ξ

(j)
i1 , . . . , ξ

(j)
i,d2−1, η

(j)
i ), j = 1, . . . , d1. Let θ̂ be LSE:

θ̂ = (ξT ξ)−1ξT η. It does not depend on the order of rows. Let h(j)(x) = E{ξ1|X1j = x} be condi-

tional expectations, L(j)(x) =
x∫
0

h(j)(s) ds be induced theoretical generalised Lorentz curves (see

Davydov and Egorov (2000)), b2j (x) = E
(
(ξ1 − h(j)(x))T (ξ1 − h(j)(x)) | X1j = x

)
be matrices of

conditional covariances. Let G = EξT1 ξ1. Then∫ 1

0

(
b2j (x) + (h(j)(x))Th(j)(x)

)
dx = G
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for any j = 1, . . . , d2 − 1. Let ε̂
(j)
i = η

(j)
i − ξ

(j)
i θ̂ be regression residuals, ∆̂

(j)
k =

k∑
i=1

ε̂
(j)
i be its

partial sums, ∆̂
(j)
0 = 0. Let Ẑ

(j)
n = {Ẑ(j)

n (t), 0 ≤ t ≤ 1} be a piecewise linear random function
with nodes (

k

n
,

∆̂
(j)
k√

nVarε1

)
, k = 0, 1, . . . , n.

The next theorem generalizes Theorem 1 in Kovalevskii (2020) to the multidimensional case.

Theorem 5 If matrix G exists and is non-degenerate and H0 is true then Ẑn =⇒ Ẑ. Here Ẑ
is a centered d1-dimensional Gaussian process with continuous a.s. sample paths and covariance

matrix function K̂(s, t) =
(
K̂ij(s, t)

)d1
i,j=1

,

K̂ij(s, t) = P(X1i ≤ s,X1j ≤ t)− L(i)(s)G−1(L(j)(t))T , s, t ∈ [0, 1].

We discuss applications of this result to testing the hypothesis of linear dependence.

Acknowledgement The work is supported by the Mathematical Center in Akademgorodok
under the agreement N. 075-15-2022-281 with the Ministry of Science and Higher Education of
the Russian Federation.
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The prediction of record values based on a single sample has been studied extensively in the
literature (cf. e.g., [2, 5, 6]). The case of two observed samples of records is considered for
example in [1] and [7], where a record of one sample is predicted based on data of the other
sample.

In our talk, we discuss another approach to prediction with several samples. We predict future
records for each sample simultaneously and the prediction is based on information from observed
records of all samples.

Known point prediction procedures in the one-sample case, namely maximum likelihood, maxi-
mum observed likelihood and maximum product of spacings prediction ([4, 8, 9]), are adapted
to the described setting of several samples and compared to the one sample case. Additionally,
methods for interval prediction are given. These prediction methods are studied in case of an
underlying Pareto distribution. Finally, the point predictors are applied to data from athletics,
which may be assumed to follow a Pareto distribution ([3]).
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Statistical analysis of record values is of interest in various fields, such as actuarial science,
environmental studies and sports. For basic references on record values, we refer to the mono-
graphs [1, 2]. In this presentation, applications from insurance are considered, where prediction
of extreme claims or losses is crucial for pricing and quantitative risk modeling (cf. [2, 4, 5]).

Based on record values in a sequence of iid random variables, several authors study point pre-
diction of future record values, e.g., [6, 7, 8, 9, 10, 11]. Here, the problem of predicting a future
record value (such as a future record claim) based on a sequence of previously observed record
values is addressed by means of prediction intervals.

There are former results on this topic; for an underlying Pareto distribution, respective exact and
approximate prediction intervals for future upper record values (see [9, 12, 13]) are summarized
and modified and new ones are developed based on a point predictor via the method of maximum
product of spacings (see [11]).

In a simulation study, these prediction intervals are evaluated and compared regarding coverage
frequency and length. Several prediction methods are applied to real data sets from the insurance
industry, which turn out to perform well.

The use of the Pareto distribution is discussed along with the common situation of a fairly
small number of observed record values. In order to increase the number of observations, the
application of k-th record values (cf. [14]) is examined as an option for statistical analyses
to predict, e.g., second largest record claims. The methods seem to be able to capture the
magnitude of future record claims, even for small numbers of record observations (see [15]).

Keywords: record values, interval prediction, Pareto distribution, real insurance data sets
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[4] Klüppelberg, C., Straub, D., andWelpe, I.M. (2014). Risk - A Multidisciplinary Introduc-
tion. Springer.

[5] McNeil, A.J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Con-
cepts, Techniques and Tools - Revised Edition. Princeton University Press.

[6] Awad, A.M., and Raqab M.Z. (2000). Prediction intervals for the future record values from
exponential distribution: comparative study. J. Stat. Comput. Simul. 65(1–4), 325-–340.

[7] Basak, P., and Balakrishnan, N. (2003). Maximum likelihood prediction of future record
statistics. In: Lindqvist, B., and Doksum, K. (eds.) Chapter 11: Mathematical and Statis-
tical Methods in Reliability. World Scientific Publishing, New York, pp 159—175.



Order statistics 2
OSD2024

Jun 11–14, 2024

[8] Raqab, M.Z. (2007). Exponential distribution records: different methods of prediction. In:
Ahsanullah, M., and Raqab, M.Z. (eds.) Chapter 16: Recent Developments in Ordered
Random Variables. Nova Science Publishers, Hauppauge, pp 239—251.

[9] Raqab, M.Z., Ahmadi, J., and Doostparast, M. (2007). Statistical inference based on record
data from Pareto model. Statistics 41(2), 105—118.

[10] Volovskiy, G., and Kamps, U. (2020a). Maximum observed likelihood prediction of future
record values. TEST 29(4), 1072-–1097.

[11] Volovskiy, G., and Kamps, U. (2020b). Maximum product of spacings prediction of future
record values. Metrika 83(7), 853–868.

[12] Asgharzadeh, A., Abdi, M., and Kus, C. (2011). Interval estimation for the two-parameter
Pareto distribution based on record values. Selcuk J. Appl. Math., 149–161.

[13] Empacher, C., Kamps, U., and Volovskiy, G. (2023). Statistical prediction of future sports
records based on record values. Stats 6(1), 131–147.

[14] Dziubdziela, W., and Kopocinski, B. (1976). Limiting properties of the k-th record values.
Applicationes Mathematicae 15(2), 187-–190.

[15] Empacher, E., Kamps, U., and Schmiedt, A.B. (2024). Prediction intervals for future Pareto
record claims. Submitted.

Back to schedule



Order statistics 2
OSD2024

Jun 11–14, 2024

Further developments on characterizations of distributions
based on regressions of GOS

Mariusz Bienieka
aInstitute of Mathematics, Maria Curie-Sk lodowska University, Lublin, Poland

Back to schedule

We study the problem of the characterization of probability distributions by a regression func-
tion of non-adjacent generalized order statistics (GOS). For any fixed continuous and strictly
increasing function h : (α, β) → R and for GOS based on a continuous distribution function F
we define the regression function of GOS by

ξ(x) = E
(
h(X

(s)
∗ )

∣∣ X(r)
∗ = x

)
, x ∈ (α, β), (1)

where s > r ≥ 1. We prove the uniqueness of the characterization and we show necessary and
sufficient conditions for a function ξ : (α, β) → R to be a regression of the form (1) for some
continuous distribution F .
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