Publications


 

Articles

 

 

H.F. Gonçalves and S.D. Moura, Characterization of Triebel-Lizorkin-type spaces with variable exponents via maximal functions, local means and non-smooth atomic decompositions, Math. Nachr., to appear.

 

 

 

D.D. Haroske, S.D. Moura, C. Schneider, and L. Skrzypczak, Unboundedness properties of smoothness Morrey

spaces of regular distributions on domains, Sci. China Math. 60 (2017), no. 12, 2349–2376.

 

 

 

D.D. Haroske, S.D. Moura, and L. Skrzypczak, Smoothness Morrey spaces of regular distributions, and some unboundedness property, Nonlinear Anal. 139 (2016), 218-244.

 

 

 

D.D. Haroske and S.D. Moura, Some specific unboundedness property in Smoothness Morrey Spaces. The non-existence of growth envelopes in the subcritical case, Acta Math. Sin. (Engl. Ser.), 32 (2016), no. 2, 137-152.

 

 

 

 

W. Yuan, D.D. Haroske, S.D. Moura, L. Skrzypczak, and D. Yang, Limiting embeddings in smoothness Morrey spaces, continuity envelopes and applications, J. Approx. Theory 192 (2015), 306-335.

 

 

 

A. Gogatishvili, S.D. Moura, J. S. Neves, and B. Opic, Embeddings of Sobolev-type spaces into generalized Hölder spaces involving k-modulus of smoothness, Ann. Mat. Pura Appl. (4) 194 (2015), 425-450.

 

 

 

H.F. Gonçalves, S.D. Moura, and J. S. Neves, On trace spaces of 2-microlocal type spaces, J. Funct. Anal. 267 (2014), no. 9, 3444-3468.

 

 

 

S.D. Moura, J. S. Neves, and C. Schneider, Spaces of generalized smoothness in the critical case: Optimal embeddings, continuity envelopes and approximation numbers, J. Approx. Theory 187 (2014), 82-117.

 

 

 

Isabel N. Figueiredo, Júlio S. Neves, Susana Moura, Carlos M. Oliveira, and João D. Ramos,

 Pattern Classes in Retinal Fundus Images Based on Function Norms, In Y. Zhang and J.M.R.S. Tavares (Eds.): CompIMAGE 2014, Lecture Notes in Computer Science (LNCS) 8641, pp. 95–105. Springer International Publishing Switzerland (2014).

 

 

 

S.D. Moura, J. S. Neves, and C. Schneider, On trace spaces of 2-microlocal Besov spaces with variable integrability, Math. Nachr. 286 (2013), no. 11-12, 1240–1254.

 

 

 

S.D. Moura, J. S. Neves, and C. Schneider, Optimal embeddings of spaces of generalized smoothness in the critical case, J. Fourier Anal. Appl. 17 (2011), no. 5, 777–800.

 

 

 

S.D. Moura, J. S. Neves, and M. Piotrowski, Continuity envelopes of spaces of generalized smoothness in the critical case, J. Fourier Anal. Appl. 15 (2009), no. 6, 775-795.  

 

 

 

D.D. Haroske and S.D. Moura, Continuity envelopes and sharp embeddings in spaces of generalized smoothness, J. Funct. Anal. 254 (2008), no.6, 1487-1521.

 

 

 

S.D. Moura, J. S. Neves, and M. Piotrowski, Growth envelopes of anisotropic function spaces, Z. Anal. Anwendungen 27 (2008), no.1, 95-118.

 

 

 

S.D. Moura, I. Piotrowska, and M. Piotrowski, Non-smooth atomic decompositions of anisotropic Besov spaces and its applicationsStudia Math. 180 (2007), no.2, 169-190.

 

 

 

S.D. Moura, On some characterizations of Besov spaces of generalized smoothness, Math. Nachr. 280 (2007), 1190-1199.

 

 

 

A.M. Caetano and S.D. Moura, Local growth envelopes of spaces of generalized smoothness: the critical case, Math. Inequal. Appl. 7 (2004), no. 4, 573-606.

 

 

 

A.M. Caetano and S.D. Moura, Local growth envelopes of spaces of generalized smoothness: the subcritical case, Math. Nachr. 273 (2004), 43-57.

 

 

 

D.D. Haroske and S.D. Moura, Continuity envelopes of spaces of generalised smoothness, entropy and approximation numbers, J. Approx. Theory 128 (2004), no. 2, 151-174.

 

 

 

S.D. Moura, On the problem of the negative spectrum, in: The J.A. Sampaio Martins Anniversary volume, Textos Mat. Sér. B, 34, DMUC, 2004.

 

 

 

M. Bricchi and S.D. Moura, Complements on growth envelopes of spaces with generalized smoothness in the sub-critical case, Z. Anal. Anwendungen 22 (2003), no. 2, 383-398.

 

Monographs

 

S.D. Moura, Espaços de funções com parâmetro de derivação generalizado, números de entropia e aplicações, Tese de doutoramento, Universidade de Coimbra, 2001.

 

 

 

 

S.D. Moura, Espaços de funções, números de entropia e valores próprios de operadores, Tese de Mestrado, Universidade de Coimbra, 1997.