Page 116 - Textos de Matemática Vol. 34
P. 116
106 JOSE´ CARLOS PETRONILHO
representation, i.e.,
⟨u,f⟩=
where V is a locally integrable function with rapid decay and sufficiently regular at
the point x = b (see [17]).
Acknowledgments
I kindly acknowledge Prof. Francisco Marcell´an, Departamento de Matem´aticas, Universidad Carlos III de Madrid, for several discussions on the topics treated in this paper, as well as for some references. Thanks are also due to Prof. Renato A´lvarez- Nodarse, from Departamento de An´alisis Matem´atico, Universidad de Sevilla, for useful discussions during his stay at Coimbra University (January 2004) in the framework of the Ac¸c˜ao Integrada Luso-Espanhola E-6/03.
References
[1] M. Alfaro, F. Marcell´an, A. Pen˜a and M. L. Rezola, On linearly related orthogonal polynomials and their functionals, J. Math. Anal. Appl. 287 (2003), no. 1, 307-319.
[2] M. A. Al-Gwaiz, Theory of distributions, Marcel Dekker, New York, 1992.
[3] H. Cartan, Th´eorie ´el´ementaire des fonctions analytiques d’une ou plusieurs variables com-
plexes, Hermann, Paris, 1961.
[4] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York,
1978.
[5] G. Freud, Orthogonal polynomials, Pergamon Press, Oxford, 1971.
[6] V. K. Khoan, Distributions, analyse de Fourier, operateurs aux deriv´ees partielles (2 vol.),
Vuibert, Paris, 1972.
[7] K. H. Kwon, D. W. Lee, F. Marcell´an and S. B. Park, On kernel polynomials and self-
perturbation of orthogonal polynomials, Ann. Mat. Pura Appl. (4), 180 (2001), no. 2, 127-
146.
[8] F. Marcell´an and J. Petronilho, On the solution of some differential distributional equa-
tions: existence and characterizations of the classical moment functionals, Integral Trans-
forms Spec. Funct., 2 (1994), no. 3, 185-218.
[9] , Orthogonal polynomials and coherent pairs: the classical case, Indag. Math. (N.S.)
6 (1995), no. 3, 287-307.
[10] F. Marcella´n and A. Ronveaux, Orthogonal polynomials and Sobolev inner products: a bibli-
ography (2003).
[11] P. Maroni, Sur quelques espaces de distributions qui sont des formes lin´eaires sur l’espace
vectoriel des polynˆomes, Orthogonal polynomials and applications (Bar-le-Duc, 1984), 184-
194, Lecture Notes in Math., vol. 1171, Springer-Verlag, Berlin, 1985.
[12] , Prol´egom`enes a` l’´etude des polynoˆmes orthogonaux semiclassiques, Ann. Mat. Pura
Appl. (4) 149 (1987), 165-184.
[13] , Le calcul des formes lin´eaires et les polynoˆmes orthogonaux semiclassiques, Orthog-
onal polynomials and their applications (Segovia, 1986), 279-290, Lecture Notes in Math., vol. 1329, Springer-Verlag, Berlin, 1988.
+∞ −∞
f(x)V(x)dx, f∈P,