Page 30 - Textos de Matemática Vol. 34
P. 30
20 LU´IS DANIEL DE ABREU
References
[1] L. D. Abreu, A q-Sampling Theorem related to the q-Hankel transform, Proc. Amer. Math. Soc. (to appear).
[2] L. D. Abreu and J. Bustoz, Complete sets of q-Bessel functions, to appear in “Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman”, (eds. M. E. H. Ismail and E. Koelink), Developments in Mathematics, Kluwer Acad. Publ.
[3] L. D. Abreu, J. Bustoz and J. L. Cardoso, The roots of the third Jackson q-Bessel function, Internat. J. Math. Math. Sci. 67 (2003), 4241-4248.
[4] N. M. Atakishiyev and M. K. Atakishiyeva, q−Laguerre and Wall polynomials are related by the Fourier-Gauss transform. J. Phys. A 30 (1997), no. 13, L429-L432.
[5] J. Bustoz and J. L. Cardoso, Basic analog of Fourier series on a q-linear grid, J. Approx. Theory, 112 (2001), no. 1, 134-157.
[6] J. Bustoz and S. K. Suslov, Basic analog of Fourier series on a q-quadratic grid, Methods Appl. Anal., 5 (1998), no. 1, 1-38.
[7] H. Exton, q-Hypergeometric Functions and Applications, Ellis Horwood, Chichester, 1983.
[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cam-
bridge, UK, 1990.
[9] W. Hahn, Beitra¨ge zur theorie der Heineschen Reichen, Math. Nachr. 2 (1949), 340-379.
[10] M. E. H. Ismail, The Zeros of Basic Bessel functions, the functions Jν+ax(x), and associated orthogonal polynomials, J. Math. Anal. Appl. 86 (1982), 1-19.
[11] , Some properties of Jackson’s third q-Bessel function, Preprint.
[12] F. H. Jackson, On Generalized Functions of Legendre and Bessel, Transactions of the Royal
Society of Edinburgh 41 (1904), 1-28.
[13] , Applications of basic numbers to Bessel’s and Legendre’s functions, Proc. London
Math. Soc. 2 (1904), 192-220.
[14] H. T. Koelink, The quantum group of plane motions and the Hahn-Exton q-Bessel function,
Duke Math. J. 76 (1994), no. 2, 483-508.
[15] H. T. Koelink and R. F. Swartouw, On the zeros of the Hahn-Exton q-Bessel Function and
associated q-Lommel polynomials, J. Math. Anal. Appl. 186 (1994), 690-710.
[16] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel trans-
forms, Trans. Amer. Math. Soc. 333 (1992), no. 1, 445-461.
[17] M. Rahman, A note on the orthogonality of Jackson’s q-Bessel functions, Canad. Math. Bull.
32 (1989), no. 3, 369-376.
[18] R. F. Swarttouw, The Hahn-Exton q-Bessel Function, Ph.D. thesis, Technische Universiteit
Delft, 1992.
[19] G. N. Watson, A treatise on the Theory of Bessel Functions, 2nd edition, Cambridge Uni-
versity Press, Cambridge, 1966.
Lu´ıs Daniel de Abreu, Departamento de Matema´tica, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
E-mail address: daniel@mat.uc.pt