Page 40 - Textos de Matemática Vol. 34
P. 40
30 ANTO´NIO J. G. BENTO
Theorem 5.5. Let F = (F0,F1) be a Banach couple, let F be an intermediate space with respect to F, let E be a Banach space and assume that T ∈ L(E,F).
(i) If c(TE,Σ(F )) = 0, then c(TE,F)≤∥T∥E,F lim
t→0 ρ(t,F,F)
t1
+ lim . t→∞ ρ(t,F,F)
(ii) If c(TE,Σ(F )) ̸= 0, then 2c(TE,Σ(F ))
2 ∥T ∥E,F
+ .
Theorem 5.6. Let F = (F0,F1) be a Banach couple, let F be an intermediate space with respect to F, let E be a Banach space and assume that T ∈ L(E,F).
c(TE,F)≤
ρ c TE,Σ(F) /∥T∥E,F ,F,F
ρ ∥T∥E,F /c TE,Σ(F) ,F,F We finish this paper with a theorem for Weyl numbers.
(i) If xn(TE,Σ(F )) = 0, then xn(TE,F)≤∥T∥E,F lim
t→0 ρ(t,F,F)
t1
+ lim . t→∞ ρ(t,F,F)
(ii) If xn(TE,Σ(F )) ̸= 0, then 2xn(TE,Σ(F ))
2 ∥T ∥E,F
+ .
ρ ∥T∥E,F /xn TE,Σ(F) ,F,F
xn(TE,F)≤
ρ xn TE,Σ(F) /∥T∥E,F ,F,F
References
[1] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, 1988.
[2] A. J. G. Bento, Interpolation, measures of non-compactness, entropy numbers and s-numbers,
Ph.D. thesis, University of Sussex, 2001.
[3] J. Bergh and J. L¨ofstr¨om, Interpolation spaces. An introduction, Springer-Verlag, 1976.
[4] B. Carl and I. Stephani, Entropy, compactness and the approximation of operators, Cam-
bridge Tracts in Mathematics, no. 98, Cambridge University Press, 1990.
[5] F. Cobos, M. Cwikel and P. Matos, Best possible compactness results of Lions-Peetre type,
Proc. Edinb. Math. Soc. (2) 44 (2001), no. 1, 153-172.
[6] F. Cobos, A. Manzano, A. Martin´ez and P. Matos, On interpolation of strictly singular
operators, strictly cosingular operators and related operator ideals, Proc. Roy. Soc. Edinburgh
Sect. A 130 (2000), no. 5, 971-989.
[7] D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathe-
matical Monographs, Oxford Science Publications, Oxford: Clarendon Press, 1987.
[8] D. E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators,
Cambridge Tracts in Mathematics, vol. 120, Cambridge Univ. Press, Cambridge, 1996.
[9] H. K¨onig, Eigenvalue distribution of compact operators, Operator Theory: Advances and
Applications, vol. 16, Birkh¨auser Verlag, 1986.