Page 99 - Textos de Matemática Vol. 34
P. 99
A SURVEY ON EMBEDDINGS OF BESSEL-POTENTIAL-TYPE SPACES 89
[8] , Optimality of embeddings of logarithmic Bessel potential spaces, Q. J. Math. 51 (2000), no. 2, 185-209.
[9] D. E. Edmunds, R. Kerman and L. Pick, Optimal Sobolev Imbeddings Involving Rearrangement-Invariant Quasinorms, J. Funct. Anal. 170 (2000), 307-355.
[10] A. Gogatishvili, J. S. Neves and B. Opic, Optimality of embeddings of Bessel-potential-type spaces into Lorentz-Karamata spaces, Preprint no. 03-29, DMUC, Coimbra, submitted.
[11] , Optimality of embeddings of Bessel-potential-type spaces into Lipschitz-H¨older
spaces, Preprint no. 04-01, DMUC, Coimbra, submitted.
[12] A. Gogatishvili, B. Opic and W. Trebels, Limiting reiteration for real interpolation with
slowly varying functions, Math. Nachr. (to appear).
[13] K. Hansson, Imbedddings theorems of Sobolev type in potential theory, Math. Scand. 45
(1979), 77-102.
[14] D. D. Haroske, Envelopes in function spaces a first approach, Preprint Math/Inf/16/01,
Friedrich-Schiller-Universit¨at Jena, 2001.
[15] A. Kufner, O. John and S. Fuˇc´ık, Function spaces, Noordhoff International Publishing, Ley-
den. Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977.
[16] V. Mari´c, Regular variation and differential equations, Lecture Notes in Math., vol. 1726,
Springer Verlag, Berlin, 2000.
[17] J. S. Neves, Extrapolation results on general Besov-Ho¨lder-Lipschitz spaces, Math. Nachr.
230 (2001), 117-141.
[18] , Lorentz-Karamata spaces, Bessel and Riesz potentials and embeddings, Disserta-
tiones Math. (Rozprawy Mat.) 405 (2002), 46 pp.
[19] , A sharper embedding of Bessel-potential-type spaces in the super-limiting case,
Preprint no. 02-22, DMUC, Coimbra, submitted.
[20] , Spaces of Bessel-potential type and embeddings: the super-limiting case, Math.
Nachr. 265 (2004), 68-86.
[21] B. Opic, Embeddings of Bessel potential and Sobolev type spaces, Colloquium del Depar-
tamento de Ana´lisis Matema´tico, Secci´on 1, no. 48, Universidad Complutense de Madrid,
CURSO 1999–2000, 100-118.
[22] B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Math. Series 219,
Longman Sci & Tech., Harlow, 1990.
[23] J. Peetre, Espaces d’interpolation et th´eor`eme de Soboleff, Ann. Inst. Fourier 16 (1966),
279-317.
[24] S. I. Pohoˇzaev, On the eigenfunctions of the equation ∆u + λf(u) = 0, Dokl. Akad. Nauk
SSSR 165 (1965), 36-39 (Russian). Engl. transl. in Soviet Math. Dokl. 6 (1965), 1408-1411.
[25] S. L. Sobolev, On a theorem of functional analysis, Mat. Sbornik 4 (1938), no. 46, 471-497
(Russian). Engl. transl. in Amer. Math. Soc. Transl. Ser. 2 34 (1963), 39-68.
[26] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Uni-
versity Press, Princeton, New Jersey, 1970.
[27] R. S. Strichartz, A note on Trudinger’s extension of Sobolev’s inequality, Indiana Univ.
Math. J. 21 (1972), 841-842.
[28] H. Triebel, The structure of functions, Monographs in Mathematics, vol. 97, Birkha¨user
Verlag, Basel, 2001.
[29] N. S. Trudinger, On imbedddings into Orlicz spaces and some applications, J. Math. Mech.
17 (1967), 473-484.
[30] V. I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic
equations, Dokl. Akad. Nauk SSSR 138 (1961), 805-808 (Russian). Engl. transl. in Soviet Math. Dokl. 2 (1961), 746-749.