Page 176 - Textos de Matemática Vol 35
P. 176
154 BIBLIOGRAFIA
[16] G. Janelidze, Magid’s theorem in categories, Bull. Georgian Acad. Sci.
114, 3, 1984, 497–500 (em russo)
[17] G. Janelidze, The fundamental theorem of Galois theory, Math. USSR
Sbornik 64 (2), 1989, 359–374
[18] G. Janelidze, Pure Galois theory in categories, J. Algebra 132, 1990,
270–286
[19] G. Janelidze, What is a double central extension? (the question was asked by Ronald Brown), Cahiers de Topologie et G´eometrie Di↵´erentielle Cat´egorique XXXII-3, 1991, 191–202
[20] G. Janelidze, Precategories and Galois theory, Springer Lect. Notes in Math. 1488, 1991, 157–173
[21] G. Janelidze e G.M. Kelly, Galois theory and a general notion of central extension, J. Pure Appl. Algebra 97, 1994, 135–161
[22] G. Janelidze, D. Schumacher, e R. Street, Galois theory in variable categories, Appl. Categ. Structures 1, 1993, 103–110
[23] G. Janelidze e R.H. Street, Galois theory in symmetric monoidal cate- gories, J. Algebra 220, 1999, 174-187
[24] G. Janelidze e W. Tholen, Facets of descent, I, Appl. Categ. Structures 2, 1994, 245–281
[25] G.J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122, 1966, 461–479
[26] A. Joyal e M. Tierney, An extension of the Galois theory of Grothen- dieck, Mem. Amer. Math. Soc. 51, 309, 1984
[27] J. Kelley, General topology, Springer, 1971 (from Van Nostrand, 1955)
[28] Th.S. Ligon, Galois-Theorie in monoidalen Kategorien, Algebra Berich-
ten, 1978
[29] S. Mac Lane, Categories for the working mathematician, Second Ed., Springer, 1998
[30] A.R. Magid, The separable Galois theory of commutative rings, Marcel Dekker, 1974
[31] B. Mesablishvili, Pure morphisms of commutative rings are e↵ective des- cent morphisms for modules – A new proof, Theory Appl. Categories, 7-3, 2000, 38–42
[32] J.P. Olivier, Descente par morphismes purs, C. R. Acad. Sc. Paris, 271- A, 1970, 821–823