Page 49 - Textos de Matemática Vol. 36
P. 49

2.4. Flows on Graßmann manifolds 39
(ii) Let C ∈ Gζ(ak) and for μ ̸= k let D(aμ,C) ̸= 0. Then ( λ ν 1k , . . . , λ ν nk ) = ( λ ν 1μ , . . . , λ ν nμ ) .
Proof. ThematrixD0 =(vj,vν2k,...,vνnk)hasranknandrankD1 =rank(vν2k, ..., vνnk) = n − 1. Let the first n − 1 rows of D1 be linearly independent – otherwise we proceed analogously – then we can transform D0 by elementary column operations into the form
0 F  m+1 b D , whereb∈C
\{0} andF∈C
(n−1)×(n−1)
isregular.
This proves (i), since rank D0 = n.
To prove (ii) we observe from the definition of Gζ(ak) that ζ(ak) = ζ(aμ).
Let μ ̸= k and let us assume that the assertion in (ii) does not hold. Then there exists a q with λνiμ = λνik for q + 1 ≤ i ≤ n and (without loss of generality)
R(λνqμ eiφ) < R(λνqk eiφ)
for 0 < φ < ε0. Since D(ak,C) ̸= 0 the rows cν1k,...,cνnk
dent. Therefore we can expand cνqμ as
n
c ν qμ =  γ i c ν ik . i=1
are linearly indepen-
Since, together with cνik = cνiμ for q + 1 ≤ i ≤ n, by our assumption  c ν μ   c ν μ 
.1 .1 
 .   . 
cμ cμ  cνμ   νq−1   νq−1 
1n q
 .  
μ
D(a ,C)= . = γicνik = γicνik ̸=0,
c  i=1 νnμ  c ν k
 i=1    c ν k 
q+1
 .   . 
q+1 ..  cνnk   cνnk 
it follows that (γ1,...,γq) ̸= 0. Let γp ̸= 0 for some p ∈ {1,...,q}. Then
ckcνk  ν.1  1 . .  . 
ck cνpk−1 
 νp−1   n  .
 cνqμ = γicνik =γp . ̸=0
 cνk    n cνnk 
i=1
cνk  ck
 p+1   cνk
 .   p+1  . . 
 νn
cνk 
 1 


































































































   47   48   49   50   51