Page 97 - Textos de Matemática Vol. 36
P. 97

Bibliography 87
[CDW95] Callier, F.M., Dumortier, L. and Winkin, J. (1995). On the nonneg- ative self-adjoint solutions of the operator Riccati equation for infinite dimensional systems. Integral Equ. Operator Theory, 22, 162-195.
[CaSc63] Carlson, D. and Schneider, H. (1963). Inertia theorems for matrices: the semidefinite case. J. Math. Anal. Appl., 6, 430-446.
[CaMo00] Caviglia, G. and Morro, A. (2000). Ricccati equations for wave prop- agation in planarly-stratified solids. Eur. J. Mech. A/Solids, 19, 721-741.
[ClGe02] Clark, S. and Gesztesy, F. (2002). Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type the- orems for Dirac operators. Trans. Am. Math. Soc., 354, 3475-3534 (2002).
[ClGe01] Clark, S. and Gesztesy, F. (2001). Weyl-Titchmarsh M-function asymptotics for matrix-valued Schringer operators. Proc. Lond. Math. Soc., III. Ser., 82, 701-724.
[ClAn76] Clements, D.J. and Anderson, B.D.O. (1976). Polynomial factoriza- tion via the Riccati equation. SIAM J. Appl. Math., 31, 179-205.
[Copp71] Coppel, W.A. (1971). Disconjugacy. Lecture Notes in Mathematics, Vol. 220. Springer, Berlin.
[Denm86] Denman, E.D. (1986). Invariant imbedding, scattering processes and projectors in systems. Comput. Math. Appl. Ser. A, 12, 703-717.
[DoJoLoSo] E. Dockner, S. Jørgensen, N. V. Long, and G. Sorger. Differen- tial games in economics and management science. Cambridge University Press., 2000.
[Dosl98] Dosly, O. (1998). Riccati matrix differential equation and classification of disconjugate differential systems. Arch. Math. (Brno), 23, 231-242.
[Dym01a] Dym, H. (2001). Reproducing Kernels and Riccati equations. Int. J. Appl. Math. Comp. Sci, 11, 35-53.
[Egor93] Egorov, M.A. (1993). A criterion for the matrix differential Riccati equation to be linearizable and some properties of solutions. J. Differential Equ., 29, 1461-1465.
[En] J. C. Engwerda. On the open-loop Nash equilibrium in LQ-games. Journal of Economic Dynamics and Control, 22:729–762, 1998.
[FaRi] L. Farina and S. Rinaldi. Positive linear systems, Wiley-Interscience, New York, 2000.


































































































   95   96   97   98   99