Page 65 - Textos de Matemática Vol. 38
P. 65
ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 57
Note that by the liminf rule, at limit times t, the register contents will be α′ = β = t. The program computes the ordinal predecessor function
α−˙1= β, ifα=β+1, α, else.
Ordinal computability is closed under compositions:
Theorem 4.4. Let f(v0,...,vn−1) and g0(w⃗),...,gn−1(w⃗) be computable func- tions on the ordinals. Then the composition h(w⃗) = f(g0(w⃗),...,gn−1(w⃗)) is ordinal register computable.
The ordinal exponentiation function α → βα will be important for the sequel:
Ordinal exponentiation, computing gamma = beta ** alpha: 1 gamma:=1
2 alpha’:=0
3 if alpha=alpha’ then STOP
4 gamma=gamma * beta 5 alpha’=alpha’+1
6 goto3
The Go¨del pairing function is also ordinal computable:
Goedel pairing, computing gamma = G(alpha,beta): 0 alpha’:=0
1 beta’:=0
2 eta:=0
3 flag:=0
4 gamma:=0
5 if 6 if
7 if 8 if 9 if
alpha=alpha’ and beta=beta’ then STOP
alpha’=eta and beta’=eta and flag=0 then
alpha’=0, flag:=1, go to 5 fi
alpha’=eta and beta’=eta and flag=1 then
eta:=eta+1, alpha’=eta, beta’=0, gamma:=gamma+1, go to 5 fi beta’<eta and flag=0 then
beta’:=beta’+1, gamma:=gamma+1, go to 5 fi alpha’<eta and flag=1 then alpha’:=alpha’+1, gamma:=gamma+1, go to 5 fi
The inverse functions G0 and G1 satisfying
∀γγ = G(G0(γ), G1(γ))
are ordinal computable as well. To compute G0(γ) compute G(α, β) for α, β < γ until you find α, β with G(α, β) = γ; then set G0(γ) = α. This is a special case of the following inverse function theorem.