Page 15 - Textos de Matemática Vol. 46
P. 15

MATHEMATICAL GREETINGS TO MANUELA SOBRAL 5
[16] G. Janelidze and M. Sobral, Finite preorders and topological descent. I, Special volume celebrating the 70th birthday of Professor Max Kelly, Journal of Pure and Applied Algebra 175 (2002), no. 1–3, 187–205.
[17] G. Janelidze and M. Sobral, Finite preorders and topological descent. II, E´tale descent. Journal of Pure and Applied Algebra 174 (2002), no. 3, 303–309.
[18] J. MacDonald and M. Sobral, Aspects of monads, in: Categorical foundations, 213–268, Encyclopedia Math. Appl., 97, Cambridge Univ. Press, Cambridge, 2004.
[19] G. Janelidze, M. Sobral, and W. Tholen, Beyond Barr exactness: e↵ective descent mor- phisms, in: Categorical foundations, 359–405, Encyclopedia Math. Appl., 97, Cambridge Univ. Press, Cambridge, 2004.
[20] M. Sobral, Descent for discrete (co)fibrations, Applied Categorical Structures 12 (2004), no. 5–6, 527–535.
[21] X. Guo, M. Sobral, and W. Tholen, Descent equivalence, Cahiers de Topologie et Geom´etrie Di↵´erentielle Cat´egoriques 45 (2004), no. 4, 301–315.
[22] J. Ad´amek, M. Sobral, and L. Sousa, Morita equivalence of many-sorted algebraic the- ories, Journal of Algebra 297 (2006), no. 2, 361–371.
[23] M. Dias and M. Sobral, Descent for Priestley spaces, Applied Categorical Structures 14 (2006), no. 3, 229–241.
[24] G. Janelidze and M. Sobral, Descent for compact 0-dimensional spaces, Theory and Applications of Categories 21 (2008), no. 10, 182–190.
[25] G. Janelidze and M. Sobral, Profinite relational structures, Cahiers de Topologie et Geom´etrie Di↵´erentielle Cat´egoriques 49 (2008), no. 4, 280–288.
[26] J. Ad´amek, M. Sobral, and L. Sousa, A logic of implications in algebra and coalgebra, Algebra Universalis 61 (2009), no. 3–4, 313–337.
[27] G. Janelidze and M. Sobral, Descent for regular epimorphisms in Barr exact Goursat categories, Applied Categorical Structures 19 (2011), no. 1, 271–276.
[28] N. Martins-Ferreira and M. Sobral, On categories with semidirect products, Journal of Pure and Applied Algebra 216 (2012), no. 8–9, 1968–1975.
[29] N. Martins-Ferreira, A. Montoli, and M. Sobral, Semidirect products and crossed mod- ules in monoids with operations, Journal of Pure and Applied Algebra 217 (2013), no. 2, 334–347.
[30] D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral, Schreier split epimorphisms in monoids and in semirings, Textos de Matem´atica, S´erie B, 45. Universidade de Coim- bra, Departamento de Matem´atica, Coimbra, 2013.
[31] G. Janelidze and M. Sobral, What are e↵ective descent morphisms of Priestley spaces?, Topology and its Applications 168 (2014), 135–143.
[32] D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral, Schreier split epimorphisms between monoids, Semigroup Forum 88, no. 3, (2014), 739–752.
[33] N. Martins-Ferreira, A. Montoli and M. Sobral, Semidirect products and Split Short Five Lemma in normal categories, Applied Categorical Structures 22 (2014), no. 5–6, 687–697.
















































































   13   14   15   16   17