Page 75 - Textos de Matemática Vol. 46
P. 75

ON THE REPRESENTABILITY OF ACTIONS FOR TOPOLOGICAL ALGEBRAS 65
References
[1] M. Barr, Relational algebras, in: Reports of the Midwest Category Seminar, IV, Lecture Notes in Mathematics, vol. 137 (1970), 39–55, Springer.
[2] M. Barr, Exact categories, Lecture Notes in Mathematics, vol. 236, (1970), 1–120, Springer.
[3] F. Borceux, D. Bourn, Mal’cev, protomodular, homological and semi-abelian categories, Mathematics and its applications, vol. 566 (2004), Kluwer.
[4] F. Borceux, D. Bourn, Split extension classifier and centrality, Contemporary Mathe- matics, vol. 431 (2007), 85–104.
[5] F. Borceux, M.M. Clementino, Topological semi-abelian algebras, Adv. Math. 190 (2005), 425–453
[6] F. Borceux, G. Janelidze, G.M. Kelly, On the representability of actions in a semi-abelian category, Theory Appl. Categ. 14 (2005), 244–286.
[7] F. Borceux, G. Janelidze, G.M. Kelly, Internal object actions, Comment. Math. Univ. Carolin. 46 (2005), no.2, 235–255.
[8] J.M. Casas, T. Datuashvili, M. Ladra, Universal strict general actors and actors in categories of interest, Appl. Categ. Structures 18 (2010), 85–114.
[9] M.M. Clementino, D. Hofmann, W. Tholen, The convergence approach to exponentiable maps, Port. Math. (N.S.) 60 (2003), no. 2, 139–160.
[10] M.M. Clementino, A. Montoli, L. Sousa, Semidirect products of (topological) semi- abelian algebras, J. Pure Appl. Algebra 219 (2015), 183–197.
[11] B.J. Day, G.M. Kelly, On topological quotient maps preserved by pullbacks or products, Proc. Cambridge Philos. Soc. 67 (1970), 553–558.
[12] H. Herrlich, E. Lowen-Colebunders, F. Schwarz, Improving Top: PrTop and PsTop, Category theory at work (Bremen, 1990), Res. Exp. Math. 18 (1991), 21–34, Heldermann, Berlin, 1991.
[13] G. Hochschild, Cohomology and representation of associative algebras, Duke Math. J. 14 (1947), 921–948.
[14] J. Isbell, General function spaces, products and continuous lattices, Math. Proc. Cam- bridge Philos. Soc. 100 (1986), no. 2, 193–205.
[15] G. Janelidze, L. M´arki, W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), no. 2–3, 367–386.
[16] J.L. Loday, Une version non commutative des alg`ebres de Lie: les alg`ebres de Leibniz, Enseign. Math. 39 (1993), no.2, 269–293.
[17] S. Mac Lane, Categories for the working Mathematician, 2nd ed, Springer (1998).
[18] G. Metere, A. Montoli, Semidirect products of internal groupoids, J. Pure Appl. Algebra
214 (2010), 1854–1861.
[19] G. Orzech, Obstruction theory in algebraic categories I, J. Pure Appl. Algebra 2 (1972),
287–314.
[20] C. Pisani, Convergence in exponentiable spaces, Theory Appl. Categ. 5 (1999), no. 6,
148–162.
[21] T. Porter, Extensions, crossed modules and internal categories in categories of groups
with operations, Proc. Edinburgh Math. Soc. 30 (1987), 373–381.
[22] F. Schwarz, Powers and exponential objects in initially structured categories and ap- plications to categories of limit spaces, Proceedings of the Symposium on Categorical Algebra and Topology (Cape Town, 1981), Quaestiones Math. 6 (1983), no. 1–3, 227–
254.






































































   73   74   75   76   77