Page 115 - Textos de Matemática Vol. 47
P. 115
ESTIMATION OF THE CONDITIONAL QUANTILE FUNCTION 105
[6] J. V. Castellana and M. R. Leadbetter, On smoothed probability density estimation for stationary processes, Stochastic Process. Appl. 21 (2), 179–193, 1986.
[7] M. Chaouch and S. Khardani, Kernel-smoothed conditional quantiles of randomly cen- sored functional stationary ergodic data, J. Nonparametr. Stat. 27 (1), 65–87, 2015.
[8] Y. Chaubey, N. La¨ıb, and A. Sen, Generalised kernel smoothing for nonnegative sta-
tionary ergodic processes, J. Nonparametr. Stat. 22 (8), 973–997, 2012.
[9] S. Dabo-Niang and A. Laksaci, Nonparametric quantile regression estimation for func-
tional dependent data, Comm. Statist. Theory Methods 41 (7), 1254–1268, 2012.
[10] M. Delecroix, Sur l’estimation des densit´es d’un processus stationnaire a` temps continu,
Pub. Inst. Stat. Univ. Paris 25, 17–39, 1980.
[11] M. Delecroix, M. E. Nogueira, and A. C. Rosa, Sur l’estimation de la densit´e
d’observations ergodiques, Statist. Anal. Donn´ees 16 (3), 25–38, 1992.
[12] M. Delecroix and A. C. Rosa, Ergodic processes prediction via estimation of the condi-
tional distribution function, Ann. I.S.U.P. 39 (2), 35–56, 1995.
[13] S. Didi, Quelques propri´et´es asymptotiques en estimation non param´etrique de fonc-
tionnelles de processus stationnaires en temps continu, Ph.D. Thesis, University Pierre
and Marie Curie - Paris VI, 2014.
[14] S. Didi and D. Louani, Consistency results for the kernel density estimate on continuous
time stationary and dependent data, Statist. Probab. Lett. 83 (4), 1262–1270, 2013.
[15] S. Didi and D. Louani, Asymptotic results for regression function estimate on continuous
time stationary and ergodic data, Stat. Risk Model. 31 (2), 129–150, 2014.
[16] M. Ezzahrioui and E. Ould-Sa¨ıd, Asymptotic results of a nonparametric conditional quantile estimator for functional time series, Comm. Statist. Theory Methods 37 (17),
2735–2759, 2008.
[17] F. Ferraty, A. Rabhi, and P. Vieu, Conditional quantiles for functional dependent data
with application to the climatic El Nin˜o phenomenon, Sankhya¯ 67 (2), 378–398, 2005.
[18] F. Ferraty and P. Vieu, Nonparametric functional data analysis, Springer-Verlag, Berlin,
2006.
[19] A. Gannoun, J. Saracco, and K. Yu, Nonparametric prediction by conditional median
and quantiles, J. Statist. Plann. Inference 117 (2), 207–223, 2003.
[20] A. Gannoun, J. Saracco, A. Yuan, and G. E. Bonney, Non-parametric quantile regression
with censored data, Scand. J. Statist. 32 (4), 527–550, 2005.
[21] A.E.GouchandI.V.Keilegom,Locallinearquantileregressionwithdependentcensored
data, Statist. Sinica 19, 1621–1640, 2009.
[22] R. Koenker, Quantile regression, Cambridge University Press, Cambridge, 2005.
[23] N. La¨ıb and E. Ould-Sa¨ıd, A robust nonparametric estimation of the autoregression
function under an ergodic hypothesis, Canad. J. Statist. 28 (4), 817–828, 2000.
[24] N. La¨ıb and D. Louani, Nonparametric kernel regression estimation for functional sta- tionary ergodic data: asymptotic properties, J. Multivariate Anal. 101 (10), 2266–2281,
2010.
[25] N. La¨ıb and D. Louani, Rates of strong consistencies of the regression function estimator
for functional stationary ergodic data, J. Statist. Plann. Inference 141 (1), 359–372,
2011.
[26] A. Laksaci, M. Lemdani, and E. Ould-Sa¨ıd, A generalized L1 approach for a kernel
estimator of conditional quantile with functional regressors: consistency and asymptotic
normality, Statist. Probab. Lett. 79 (8), 1065–1073, 2009.
[27] F. X. Lejeune, Histogramme, r´egressogramme et polygone de fr´equences en temps con-
tinu, Ph.D. Thesis, University Pierre and Marie Curie - Paris VI, 2007.