Page 160 - Textos de Matemática Vol. 47
P. 160
150 P. DE ZEA BERMUDEZ, M. A. AMARAL TURKMAN, AND K. F. TURKMAN
[13] A. Doucet, N. Freitas, and N. Gordon, An introduction to Sequencial Monte Carlo Methods, in: Sequential Monte Carlo Methods in Practice, A. Doucet, N. Freitas, N. Gordon (eds.), Springer, New York, 3–13, 2001.
[14] H. Feng, L. Peng, and F. Zhu, Interval estimation for a simple bilinear model, Statist. Probab. Lett. 83 (10), 2152–2159, 2013.
[15] T. Grahn, A conditional least squares approach to bilinear time series estimation, J. Time Ser. Anal. 16 (5), 509–529, 1995.
[16] P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82, 711–732, 1995.
[17] P. Embrechts, C. Klu¨ppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin, 1997.
[18] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavar´e, Markov chain Monte Carlo without likelihoods, Proc. Natl. Acad. Sci. USA 100 (26), 15324–15328, 2003.
[19] M. M. Gabr, Maximum likelihood fitting of bilinear models to time series with missing observations, in: Developments in Time Series Analysis, T. Subba Rao (ed.), Chapman & Hall/CRC, London, 283–291, 1993.
[20] M. M. Gabr, Recursive estimation of bilinear time series models, Comm. Statist. Theory Methods 21 (8), 2261—2277, 1992.
[21] A. Gelfand and A. Smith, Sampling-bases approaches to calculating marginal densities, J. Amer. Statist. Assoc. 85 (410), 398–409, 1990.
[22] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images, IEEE T. Pattern. Anal. 6, 721—741, 1984.
[23] W. R. Gilks, N. G. Best, and K. K. C. Tan, Adaptive rejection Metropolis sampling within Gibbs sampling, J. R. Stat. Soc. Ser. C. Appl. Stat. 44 (4), 455–472, 1995.
[24] W. K. Kim, L. Billard, and I. V. Basawa, Estimation for the first-order diagonal bilinear
time series model, J. Time Ser. Anal. 11 (3), 215–229, 1990.
[25] R. Leon-Gonzalez and F. Yang, Bayesian Inference and Forecasting in the Stationary
Bilinear Model, University of East Anglia Applied and Financial Economics Working
Paper Series 055, School of Economics, University of East Anglia, Norwich, UK, 2014.
[26] S. Ling, L. Peng, and F. Zhu, Inference for a special bilinear time series model, J. Time
Ser. Anal. 36, 61–66, 2014.
[27] J. M. Marin, P. Pudlo, C. P. Robert, and R. Ryder, Approximate Bayesian Computa-
tional methods, Stat. Comput. 22 (6), 1167–1180, 2012.
[28] R. M. Neal, Slice Sampling, Ann. Statist. 31 (3), 705–767, 2003.
[29] C. D. Paulino, M. A. Amaral Turkman, and B. Murteira, Estat´ıstica Bayesiana,
Funda¸c˜ao Calouste Gulbenkian, Lisboa, 2003.
[30] T. D. Pham and L. T. Tran, On the first-order bilinear time series model, J. Appl.
Probab. 18 (3), 617–627, 1981.
[31] S. Resnick, Modeling Data Networks, in: Extreme Values in Finance, Telecommunica-
tions and the Environment, B. Finkensta¨dt, H. Rootz´en (eds.), Chapman & Hall/CRC,
Boca Raton, Florida, 287–372, 2003.
[32] H. Rue, S. Martino, and N. Chopin, Approximate Bayesian inference for latent Gaussian
models by using integrated nested Laplace approximations, J. R. Stat. Soc. Ser. B Stat.
Methodol. 71 (2), 319–392, 2009.
[33] M. G. Scotto, M´etodos de estimac¸a˜o em modelos bilineares, MSc thesis, Faculty of
Sciences, Lisbon, 1997.
[34] S. A. O. Sesay and T. Subba Rao, Frequency domain estimation of bilinear time series
models, J. Time Ser. Anal. 13 (6), 521–545, 1992.