Page 58 - Textos de Matemática Vol. 47
P. 58
48 J. LEITE
[11] C. W. J. Granger, S. Spear, and Z. Ding, Stylized facts on the temporal distributional properties of absolute returns: an update, in: Proceedings of the Hong Kong International Workshop on Statistics and Finance: An Interface, W. Chan, W. Li, H. Tong (eds.), Imperial College Press, London, 97–120, 2000.
[12] M. Haas, Persistence in volatility, conditional kurtosis, and the Taylor property in ab- solute value GARCH processes, Statist. Probab. Lett. 79 (5), 1674–1683, 2009.
[13] C. He and T. Ter¨asvirta, Properties of moments of a family of GARCH processes, J. Econometrics 92, 173–192, 1999.
[14] S. Ling and M. McAleer, Stationarity and the existence of moments of a family of GARCH processes, J. Econometrics 106, 109–117, 2002.
[15] H. Malmsten and T. Tera¨svirta, Stylized facts of financial time series and three popular models of volatility, Eur. J. Pure Appl. Math. 3, 443-477, 2010.
[16] B. Mandelbrot, The variation of certain speculative prices, J. Bus. 36, 394–419, 1963.
[17] A. Mora-Gala´n, A. P´erez, and E. Ruiz, Stochastic volatility models and the Taylor e↵ect, Statistics and Econometrics Series Working Papers ws046315, Universidad Carlos III de
Madrid, 2004.
[18] A. P´erez, E. Ruiz, and H. Veiga, A note on the properties of power-transformed returns
in long-memory stochastic volatility models with leverage e↵ect, Comput. Statist. Data
Anal. 53, 3593–3600, 2010.
[19] S. J. Taylor, Modelling Financial Time Series, Jonh Wiley & Sons, Chichester, UK,
1986.
[20] S. J. Taylor, Asset Price Dynamics, Volatility, and Prediction. Princeton University
Press, Princeton, 2005.
[21] H. Veiga, Financial Stylized Facts and the Taylor-E↵ect in Stochastic Volatility Models,
Economics Bulletin 29, 265–276, 2009.
(J. Leite) CMUC and Instituto Polite´cnico de Coimbra Coimbra Business School (ISCAC)
Quinta Agr´ıcola - Bencanta
3040-316 Coimbra
Portugal
E-mail address: jleite@iscac.pt