Page 90 - Textos de Matemática Vol. 47
P. 90

80 P. E. OLIVEIRA
continuity of the second conditional moment s, we have E(rbn(x) r(x))2
= f1(x) ✓ r2(x) + s(x) + ws(x)   2r(x) ◆ + wr2(x, h) nF (x, h) f02 (x) f02 (x) f02 (x) f0 (x)
+o✓ 1 + wr(x,h) + (K,x,h)◆. n1/4F 1/4(x, h)  1/2(K, x, h)n1/4F 1/4(x, h)
References
[1] N. Bensa¨ıd and J. P. Fabre, Optimal asymptotic quadratic error of kernel estimators of Radon-Nikodym derivatives for strong mixing data, J. Nonparametr. Stat. 19, 77–88, 2007.
[2] D. Bosq and N. Cheze, Erreur quadratique asymptotique optimale de l’estimateur non param´etrique de la r´egression pour des observations discretis´ees d’un processus station- naire `a temps continu, C. R. Acad. Sci. Paris S´er. I Math. 317 (9), 891–894, 1993.
[3] F. Ferraty and P. Vieu, Dimension fractale et estimation de la r´egression dans des espaces vectoriels semi-norm´es, C. R. Acad. Sci. Paris S´er. I Math. 330, 139–142, 2000.
[4] F. Ferraty and P. Vieu, Nonparametric models for functional data, with application in regression, time series prediction and curve estimation, The International Conference on Recent Trends and Directions in Nonparametric Statistics, J. Nonparametr. Stat. 16, 111–125, 2004.
[5] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Theory and Practice, New York, Springer, 2006.
[6] F.Ferraty,A.Mas,andP.Vieu,NonparametricRegressiononFunctionalData:Inference and practical aspects, Aust. N. Z. J. Stat. 49, 267–286, 2007.
[7] J. Ge↵roy, Sur l’estimation d’une densit´e dans un espace m´etrique, C. R. Acad. Sci. Paris S´er. A 278, 1449–1452, 1974.
[8] J. Ge↵roy, Etude de la convergence du r´egressogramme, Publ. Inst. Statist. Univ. Paris 25 (1-2), 41–56, 1980.
[9] P. Jacob and L. Ni´er´e, Contribution a` l’estimation des lois de Palm d’une mesure al´eatoire, Publ. Inst. Statist. Univ. Paris 35 (2), 39–49, 1990.
[10] P. Jacob and P. E. Oliveira, A general approach to nonparametric histogram estimation, Statistics 27, 73–92, 1995.
[11] P. Jacob and P. E. Oliveira, Kernel estimators of general Radon-Nikodym derivatives, Statistics 30, 25–46, 1997.
[12] A. Karol and A. Nazarov, Small ball probabilities for smooth Gaussian fields and tensor products of compact operators, Math. Nachr. 287, 595–609, 2014.
[13] W. V. Li and Q. M. Shao, Gaussian processes: inequalities, small-ball probabilities and applications, in: Stochastic Processes: Theory And Methods, C.R. Rao, D. Shanbhag (eds.), Handbook of Statistics 19, 533–597, Elsevier, 2001.
[14] E. Masry, Nonparametric regression estimation for dependent functional data: asymp- totic normality, Stochastic Process. Appl. 115, 155–177, 2005.


































































































   88   89   90   91   92