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Classical Carathéodory’s Extension Theorem

Theorem
A measure m: B — [0,1] on a Boolean algebra B C P(X)
uniquely extends to a countably additive measure on o(B).
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Classical Carathéodory’s Extension Theorem

Theorem
A measure m: B — [0,1] on a Boolean algebra B C P(X)
uniquely extends to a countably additive measure on o(B).
Proof.

1. Extend m to a countably additive

B function

\ w(U) =sup{m(B) | Be B, BC U}

Extend p to an outer measure

/ e (M) = inf{(U) | U € 75, M C U}

3. p* is a measure on measurable subsets
H C P(X). Restrict p* to o(B) C H.
L]
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Extension theorem by Igor K¥iz and Ale§ Pultr

Abstract o-algebra is a Boolean algebra which has countable joins.

Abstract finitely (resp. countably) additive measure m: B — [0, 1]
satisfies

1. m(OB) = 0, m(lB) = 1,
2. m(aV b)+ m(aA b)=m(a)+ m(b)
3. (resp. Do m(a;) = m(\/2, ai) if a;'s are pairwise disjoint)



Extension theorem by Igor K¥iz and Ale§ Pultr

Abstract o-algebra is a Boolean algebra which has countable joins.

Abstract finitely (resp. countably) additive measure m: B — [0, 1]
satisfies

1. m(OB) = O, m(lB) = 1,

2. m(aV b)+ m(aA b)=m(a)+ m(b)

3. (resp. Do m(a;) = m(\/2, ai) if a;'s are pairwise disjoint)

Theorem (Kf¥iz, Pultr 2010)
Every finitely additive m: B — [0,1] B

uniquely extends to a countably additive J: \

measure j: cAlg (B) — [0, 1] such that oAlg (B) [0, 1]
17 J

Enlarges the space. On the other hand, useful for integration over
infinite-dimensional spaces!



What instead of P(X)?

Finitely additive m: B — [0, 1] extends
to a valuation ¢: IdI(B) — [0, 1],

[ wu(l) = sup{m(a) : a € I} }




What instead of P(X)?
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What instead of P(X)?

Finitely additive m: B — [0, 1] extends
to a valuation 4x: IdI(B) — [0,1], i.e.
1. w is a finitely additive measure
2. For a directed A C' IdI(B):

sup (1) = p(\/T A)

I€A

We need a complete Boolean algebra
which

e embeds IdI(B), and

e has the same (frame-theoretic)

points as B has.



What instead of P(X)?

IdI(B) is a frame!

A

an VI b; = \/,-(a A b,‘)
eg. O(X,7) =1

|

Finitely additive m: B — [0, 1] extends
to a valuation 4: IdI(B) — [0,1], i.e.
1. w is a finitely additive measure
2. For a directed A C" IdI(B):

sup (1) = u(\/" A)

1A

We need a complete Boolean algebra
which

e embeds IdI(B), and

e has the same (frame-theoretic)

points as B has.



Frame Theory intermezzo: Sublocales

A subspace M C X introduces a frame congruence ~p on O(X):

U~y V iff UNM=VNM



Frame Theory intermezzo: Sublocales

A subspace M C X introduces a frame congruence ~p on O(X):

U~y V iff UNM=VNM

Congruences are equivalently represented as sublocales S C L

1.VACS, ANAeS
2.Vxel,seS, x—se$



Frame Theory intermezzo: Sublocales

A subspace M C X introduces a frame congruence ~p on O(X):

U~y V iff UNM=VNM

Congruences are equivalently represented as sublocales S C L
1.VACS, ANAeS
2.Vxel,seS, x—se$

The mapping “congruences — sublocales”:

~ C LxL ~— {largest elements of ~-equivalence classes}

Every subspace of X introduces a sublocale of O(X)
but not vice versal!



The complete lattice (coframe) of sublocales
S(L) = {SCL|Sisasublocale}, ordered by C .

Joins and meet easy to compute!
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The complete lattice (coframe) of sublocales
S(L) = {SCL|Sisasublocale}, ordered by C .

Joins and meet easy to compute!

Open and closed sublocales (a € L):
o(a)={a—x|xel} and c(a)=1"Ta
They are complemented in S(L).
V;o(ai) =0(V;ai), c(a)Ve(b)=c(anb), .. (asexpected)

Join-sublattice S;(L) C S(L)

S(L) = the set of sublocales obtained as
‘ joins of closed sublocales

Always a frame!



Theorem (Picado, Pultr, Tozzi 2016)
If L is subfit then S¢(L) is a complete Boolean algebra and

aclr—o(a) e S(L)

is an injective frame homomorphisms L — S.(L).
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Theorem (Picado, Pultr, Tozzi 2016)
If L is subfit then S¢(L) is a complete Boolean algebra and

aclr—o(a) e S(L)

is an injective frame homomorphisms L — S.(L).

Moreover

o If X is a Ty space, then S;(O(X)) = P(X).
e In case of X = spec(B), we have O(X) = IdI(B) and so

S.(1dI(B)) = P(X).

e — instead of P(X) take S (IdI(B))



Putting it together

B Valuation p: IdI(B) — [0, 1] extends to an

[ \ outer measure y*: S (IdI(B)) — [0, 1],

ldI(B) — [0,1]

[ / [ w(x) = inf{u(i) | i € 1dI(B), x < i} |

Sc(1dI(B))




Putting it together
B

ldI(B) — [0,1]

/

Sc(1dI(B))

Valuation p: IdI(B) — [0, 1] extends to an
outer measure p*: S;(IdI(B)) — [0,1], i.e.

1. p* is monotone

2.t (xVy)+pr(xAy) < p(a) + p*(b)
3. For a directed (x;)%2, €' S:(IdI(B)):

sup i (xi) = /f"(\/'T Xi)
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Putting it together

B Valuation p: IdI(B) — [0, 1] extends to an
\ outer measure p*: S;(IdI(B)) — [0,1], i.e.
IdI(B) Al [0,1] 1. pu* is monotone
[ 2.t (xVy)+pr(xAy) < p(a) + p*(b)
p* 3. For a directed (x;)%2, €' S:(IdI(B)):
Se(1dI(B)) sup 1 (xi) = u*(\/T xi)
Furthermore

H = {x € S(dI(B)) | w'(x) + u*(-x) < 1}

is a o-algebra (containing os(B)) and so p*[4, is a measure.



Pointfree Carathéodory’s Extension Theorem

Theorem

A finitely additive measure m: B — [0, 1] uniquely extends to a
countably additive measure on os(B) C S.(IdI(B)).



Pointfree Carathéodory’s Extension Theorem

Theorem

A finitely additive measure m: B — [0, 1] uniquely extends to a
countably additive measure on os(B) C S.(IdI(B)).

Corollary

There are bijective correspondences between

e finitely additive measures B — [0, 1]
e regular countably additive measures os(B) — [0, 1]

o regular valuations os(ldI(B)) — [0, 1]



Comparison with the classical result

For a Boolean algebra B C P(X), it might happen that
U, B; € B for some infinite {B;}; C B.

However, in the Stone space spec(B) (i.e. in the “sobrification”)

Uil #1U,81- (Ujle1)

where [B] = {U | B € U}.



Comparison with the classical result

For a Boolean algebra B C P(X), it might happen that
U, B; € B for some infinite {B;}; C B.

However, in the Stone space spec(B) (i.e. in the “sobrification”)

Uil #1U,81- (Ujle1)

where [B] = {U | B € U}.

—> We don't need the extra assumption for m: B — [0, 1]:

For any pairwise disjoint {B;}?2, C B such that |J;Bi € B



The continuous map U: (X, P(X)) — (spec(B), P(spec(B)))

U x— {BeB|xeB}

10



The continuous map U: (X, P(X)) — (spec(B), P(spec(B)))
U x— {BeB|xeB}
introduces a frame homomorphism h: P(spec(B)) — P(X)

h: M— {x | U(x) € M}

10



The continuous map U: (X, P(X)) — (spec(B), P(spec(B)))
U x— {BeB|xeB}

introduces a frame homomorphism h: P(spec(B)) — P(X)
h: M {x | U(x) € M}

Which restricts to os(B) — o(B)

A

[ os(B) € S:(1dI(B)) = P(spec(B)) |
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The continuous map U: (X, P(X)) — (spec(B), P(spec(B)))
U x— {BeB|xeB}

introduces a frame homomorphism h: P(spec(B)) — P(X)
h: M {x | U(x) € M}

Which restricts to os(B) — o(B)

(B) h o5(B) B Define (M) = p*(U[M])
_op If the “extra assumption”
M m .

| holds for m, we obtain the
[0,1] Carathéodory’s measure!

10



Canonical extensions

For a Boolean algebra B, we have

B— B’

Characterised as

1. B is join—meet and meet—join dense in B’
2. the embedding is compact
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Canonical extensions

For a Boolean algebra B, we have

B— B’

Characterised as

1. B is join—meet and meet—join dense in B’
2. the embedding is compact

Recall

e B is a complete Boolean algebra,
o for the Stone dual X of B we have B® = (P(X), C), and
e B9 can be constructed entirely choice-free.

Consequently

o BY=P(X) =S (ldI(B))

11



Theorem (Ball, Pultr 2017)

Assume that L is subfit, L — M, and for any x < y in M there is
a < b in L such that

xAb<a and yVa>b.

If M is a Boolean frame then S.(L) = M.
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Theorem (Ball, Pultr 2017)
Assume that L is subfit, L — M, and for any x < y in M there is
a < b in L such that

xAb<a and yVa>b.

If M is a Boolean frame then S.(L) = M.

Proof that B° = S,(IdI(B)) algebraically:
For x < y pick a join of B's i € B? such that

x<i and y<£i

and pick a meet of B's f € B such that
f<y and f<£i

Then, a =iV —f and b =1 satisfy the conditions. O

12



Generalisation to distributive lattices?

We know D° 2 Up(X, <) for the Priestly space (X, 7, <) of D.

Is there a frame-theoretic construction for D%?

However

e 1dI(D) need not be subfit
o 1dI(D) </ S.(1dI(D))

What instead of S;(—)? Something like S,(L)?
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Generalisation to distributive lattices?

We know D° 2 Up(X, <) for the Priestly space (X, 7, <) of D.

Is there a frame-theoretic construction for D%?

However

e 1dI(D) need not be subfit
o 1dI(D) </ S.(1dI(D))

What instead of S;(—)? Something like S,(L)? ... is it a frame?

13



Extension theorem by Alex Simpson (2011)
Different approach
S(L)y={S CL|Sisao-sublocale of L}

Theorem

If L is a fit o-frame, then a valuation

L
m
p: L — [0,1] uniquely extends to a val- J: \

uation (1*: S°(L) — [0, 1] such that So(L)
o

*

[0,1]

14



Extension theorem by Alex Simpson (2011)
Different approach
S(L)y={S CL|Sisao-sublocale of L}

Theorem

If L is a fit o-frame, then a valuation

L
m
p: L — [0,1] uniquely extends to a val- J: \

uation p*: §?(L) — [0,1] such that S7(L) —— [0,1]
pu ’

Although o(B) C S?(IdI(B)), S?(L) is a coframe, not a o-algebra!

= We can't talk about points, it doesn't specialise to point-set setting.

On the other hand, it “resolves” Banach-Tarski paradox!

14



Concluding remarks

e K¥iz—Pultr's solution factors through ours

B

[ m

oAlg (B) —2— g5(B) —— [0,1]
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Concluding remarks
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B

| N\

oAlg (B) —2— g5(B) —— [0,1]

e It would be nice to construct D? frame-theoretically.
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Concluding remarks

e K¥iz—Pultr's solution factors through ours

B

*

oAlg (B) —2— g5(B) —— [0,1]

e It would be nice to construct D? frame-theoretically.

e The same reasoning as in the classical case applies.

e Common in K¥z—Pultr + TJ: We can study measure theory in a
point-free fashion and only add points at the end, if needed.
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Thank you!

and ...
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Happy Birthday Alesi!

Ales is influential in

so many areas of

mathematics:

1.

N o oA e N

Algebraic
topology

Category theory
Duality theory
Fuzzy logic/sets
General algebra
Graph theory
Mathematical
analysis
Pointfree
topology
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