Page 130 - Textos de Matemática Vol. 47
P. 130

120 M. E. SILVA
[20] G. Grunwald, R. Hyndman, L. Tedesco, and R.Tweedie, Non-Gaussian conditional linear AR(1) models, Aust. N. Z. J. Stat. 42, 479–495, 2000.
[21] E. J. Hannan and B. G. Quinn, The determination of the order of an autoregression, J. R. Stat. Soc. Ser. B. Methodol. 41, 1979.
[22] C. M. Hurvich and C. L. Tsai, Regression and time series model selection in small samples, Biometrika 76, 297–307, 1989.
[23] D. Jin-Guan and L. Yuan, The integer-valued autoregressive INAR(p) model, J. Time Series Anal. 12, 129–142, 1991.
[24] M. Scotto, C. Weiß, M. E. Silva, and I. Pereira, Bivariate binomial autoregressive models, J. Multivariate Anal. 125, 233 – 251, 2014.
[25] H. Joe, Time series model with univariate margins in the convolution-closed infinitely divisible class, J. Appl. Probab. 33 (3), 664–677, 1996.
[26] H. Joe, Multivariate Models and Dependence Concepts, Chapman & Hall//CRC, Lon- don, 1997.
[27] R. C. Jung and A. R.Tremayne, Useful models for time series of counts or simply wrong ones?, AStA Adv. Stat. Anal. 95, 59–91, 2011.
[28] R. C. Jung and A. R. Tremayne, Convolution-closed models for count time series with applications, J. Time Series Anal. 32, 268–280, 2011.
[29] B. Kedem and K. Fokianos, Regression Models for Time Series Analysis, Wiley, Hobo- ken, NJ, 2002.
[30] D. Lambert and C. Liu, Adaptive thresholds: monitoring streams of network counts, J. Amer. Statist. Assoc. 101, 78–88, 2006.
[31] B. McCabe and G. Martin, Bayesian predictions of low count time series, Int. J. Fore- casting 21, 315 – 330, 2005.
[32] E. McKenzie, Some ARMA models for dependent sequences of Poisson counts, Adv. in Appl. Probab. 20 (4), 822–835, 1988.
[33] E. McKenzie, Discrete variate time series, in: Stochastic processes: modelling and sim- ulation, C. Rao, D. Shanbhag (eds.), Handbook of Statistics 21, Elsevier Science, Ams- terdam, 573–606, 2003.
[34] M. Monteiro, I. Pereira, and M. G. Scotto, Optimal alarm systems for count processes, Commun. Stat. - Theor. M. 37, 3054–3076, 2008.
[35] M. Monteiro, I. Pereira, and M. G. Scotto, Integer-valued autoregressive processes with periodic structure, J. Statist. Plann. Inference 140, 1529–1541, 2010.
[36] N. Silva, Ana´lise bayesiana de s´eries temporais de valor inteiro, Tese de Doutoramento em Matem´atica, Universidade de Aveiro, Portugal, 2005.
[37] X. Pedeli and D. Karlis, A bivariate INAR(1) process with application, Stat. Model. 11, 325–349, 2011.
[38] Z. Psaradakis, M. Sola, F. Spagnolo, and N. Spagnolo, Selecting nonlinear time series models using information criteria, J. Time Series Anal. 30, 369–394, 2009.
[39] A. Quoreshi, Bivariate time series modeling of financial count data, Comm. Statist. Theory Methods 35, 1343–1358, 2006.
[40] M. Rosenblatt, Remarks on a multivariate transformation, Ann. Math. Statist. 23, 470– 472, 1952.
[41] I. Silva, Analysis of discrete-valued time series: Some contributions to discrete-valued time series, LAP LAMBERT Academic Publishing, 2012.
[42] M. E. Silva and I. Pereira, Detection of additive outliers in Poisson INAR(1) time series, in: Mathematics of Planet Earth: energy and climate change, International Conference


































































































   128   129   130   131   132