Page 129 - Textos de Matemática Vol. 47
P. 129
MODELLING TIME SERIES OF COUNTS: AN INAR APPROACH 119
of Bernoulli trials [11]. Here we focused on the INAR(1) models which are a class of observation-driven models particularly suited for stock type data. We illustrated the modelling of a time series with INAR(1) models.
Several generalizations of the INAR(1) models are available in the literature, namely: INAR(p) models [23, 9], models with moving average components, INARMA, [33], periodic models [35] and bivariate models [37].
References
[1] S. Ahn, G. Lee, and J. Jeon, Analysis of the m/d/1-type queue based on an integer- valued first-order autoregressive process, Oper. Res. Lett. 27, 235–241, 2000.
[2] M. Al-Osh and A. Alzaid, First-order integer-valued autoregressive (INAR(1)) process, J. Time Series Anal. 8, 261–275, 1987.
[3] M. Alosh, The impact of missing data in a generalized integer-valued autoregression model for count data, J. Biopharm. Statist. 19, 1039–1054, 2009.
[4] A. Alzaid and M. Al-Osh, First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties, Stat. Neerl. 42, 53–61, 1988.
[5] P. Billingsley, Statistical Inference for Markov Processes, University of Chicago Press, 1961.
[6] R. Blundell, R. Gri th, and F. Windmeijer, Individual e↵ects and dynamics in count data models, J. Econometrics 108, 113–131, 2002.
[7] K. Bra¨nn¨as, J. Hellstr¨om, and J. Nordstro¨m, A new approach to modelling and fore- casting monthly guest nights in hotels, Int. J. Forecasting 18, 19 – 30, 2002.
[8]K.Bra¨nn¨asand J.Nordstro¨m,Touristaccommodatione↵ectsoffestivals,Tourism Econ. 12, 291–302, 2006.
[9] B. Bu and B. McCabe, Maximum likelihood estimation of higher-order integer-valued autoregressive process, J. Time Series Anal. 24, 973–994, 2008.
[10] M. Cardinal, R. Roy, and J. Lambert, On the application of integer-valued time series models for the analysis of disease incidence, Stat. Med. 18, 2015–2039, 1999.
[11] Y. Cui and R. Lund, A new look at time series of counts, Biometrika 96, 781–792, 2009.
[12] C. Czado, T. Gneiting, and L. Held, Predictive model assessment for count data, Bio-
metrics 65, 1254–1261, 2009.
[13] R. Davis and R. Wu, A negative binomial model for time series of counts, Biometrika
96, 735–749, 2009.
[14] A. Dawid, Statistical theory: The prequential approach, J. Roy. Statist. Soc. Ser. A 147,
278–292, 1984.
[15] K. Fokianos, A. Rahbek, and D. Tjostheim, Poisson autoregression, J. Amer. Statist.
Assoc. 104, 1430–1439, 2009.
[16] R. K. Freeland and B. P. M. McCabe, Analysis of low count time series data by Poisson
autoregression, J. Time Series Anal. 25, 701–722, 2004.
[17] A. Garc´ıa-Ferrer and R. A. Queralt, A note on forecasting international tourism demand
in Spain, Int. J. Forecasting 13 (4), 539–549, 1997.
[18] T. Gneiting, F. Balabdaoui, and A. E. Raftery, Probabilistic forecasts, calibration and
sharpness, J. R. Stat. Soc. Ser. B Stat. Methodol. 69, 243–268, 2007.
[19] T. Gneiting and A. E. Raftery, Strictly proper scoring rules, prediction, and estimation,
J. Amer. Statist. Assoc. 102, 359–378, 2007.