Page 138 - Textos de Matemática Vol. 47
P. 138

128
we deduce
n 2 m lnn
On the other hand, we have
u 2 exp  n,m
M. G. TEMIDO
!!2    1 +   ( p , 1 ) l n n Xn Xq      
 ri,j    n i=p+1j=1 ln(ij)
2
k+↵ ln n k+↵ ln n i, j
K(lnm) ↵lnn m1+↵  2↵lnn sup |r ln(ij)  |
i 1,j  1 k+↵ ln n i, j
Klnmm1+↵  2↵lnn sup |r ln(ij)  |!0, n,m!+1. i 1,j  1
u2 nm exp(  n,m)
!2   1+ (p,1) Xn Xq        
    ↵   i=p+1j=1 ln(ij) ln(nm )
 K  K1
 ln ↵  ↵ ↵lnni=p+1j=1 nm nm
n 2 m 1 + ↵ ↵
u 2 exp(  n,m)
!2  
1 +   ( p , 1 )   Xn Xq   i j   1
2
ln(nm ) n2m1+↵
2
u2 exp(  n,m)
! 2↵ ln n k+↵ ln n
  Z 1 Z 1 ↵lnn0 0
|lnxy|dxdy
lnn (lnn)  k
2
k+↵ ln n  2k
lnm
2↵ ln n
1
nk+↵ ln n exp⇣ klnlnn⌘
m 1 ↵+k+↵ ln n lnn
⇣k+↵lnn⌘ lnm 1 !0, n,m!+1. 2↵ ln n
=K
Similarly, for the third sum of the right hand side of (2.4), we obtain
1
exp  2klnn m 1 ↵+k+↵lnn lnn k+↵lnn
u2 nm exp   n,m
!!2     1+ (p,1) Xn Xq        
  ↵     i=p+1j=1 ln(nm ) ln(nm)
2
◆lnp ✓ 
ln(nm) k+lnp    lnn  +   lnn  
✓
lnn (nm)2  ln(nm↵)   ln(nm) 
For the sum concerning A1 ⇥ B2 the desired result is obtained changing n with m.
K n2m1+↵
1 k+↵ ln n
   
 ◆
K ,lnmm1+↵  2↵lnn !0, n,m!+1.


































































































   136   137   138   139   140