Page 139 - Textos de Matemática Vol. 47
P. 139

STONGLY DEPENDENT GAUSSIAN RANDOM FIELDS 129 Likewise, we deal with the sums related to A2 ⇥ B2. Indeed, since
 (p,q)ln(nm)  k, with k > 0, we get
n m Xn Xm         r i , j             e x p   u 2n , m ! i=p+1 j=q+1 ln(n m) 1 + wi,j
!! 2
n2m2 u2 1+ (p,q) ln(n m)
exp   n,m
ln(nm) 2 nm

K n2m2 ln(nm) k+↵2ln(nm)
:i>p,j>q i,j ln(n m) i=p+1 j=q+1   nm   n m ;
⇥ 8< Xn Xm       r           +         :i=p+1j=q+1  i,j ln(ij)   ln(ij)
      9= ln(nm) ;
   
⇥ 8< s u p | r l n ( i j )     | +   Xn Xm       l n i j       1 9=
✓ ◆ ↵2 ln(n m) 1 ln(n m) (n m)2
deduce
i 1 u2n,m !
nm
Xp i=1
|ri,0  ⇢n,m|exp
 1+wi,0
exp⇣ klnln(nm)⌘ ⇢ ⇣k+↵2 ln(nm)⌘⇥ o(1)+
 
Z 1Z 1 exp  2kln(nm) ln(nm) 0 0
 
|lnxy|dxdy
K2
K3{o(1)+o(1)}=o(1), n,m!+1.
k+↵2 ln(n m)
Let us consider now the sums associated with A1 ⇥ {0} and A2 ⇥ {0}. From nowonwetake  0.Duetothefactthatsupwi,0  sup wi,j = ⇤,we
i 1,j  0
 2n1+↵m
Kn1+↵  2⇤m1  2⇤ (ln(nm)) 1⇤
1+ 
K(nm)1+↵  2 ⇤ ln(nm)!0, n,m!+1.
!! 2 ⇤ u2 1+ 
exp
  n,m 2
1+  1+  1+ 


































































































   137   138   139   140   141