Page 22 - Textos de Matemática Vol. 47
P. 22

12 M. I. GOMES
[10] M. I. Gomes, A. Hall, and C. Miranda, Subsampling techniques and the jackknife methodology in the estimation of the extremal index, Comput. Statist. Data Anal. 52 (4), 2022–2041, 2008.
[11] M. I. Gomes, M. J. Martins, and M. M. Neves, Generalised Jackknife-based estimators for univariate extreme-value modeling, Comm. Statist. Theory Methods 42 (7), 1227– 1245, 2013.
[12] E. Gonc¸alves and N. Mendes-Lopes, Modelos GARCH e TARCH: estacionaridade forte, estacionaridade fraca, ergodicidade e comportamento limite do agregado temporal, Por- tugal. Math. 50 (4), 448–465, 1993.
[13] E. Gon¸calves and N. Mendes-Lopes, Distributional Properties of Generalized Threshold ARCH Models, Selected Papers of Statistical Societies, in: Advances in Regression, Sur- vival Analysis, Extreme Values, Markov Processes and Other Statistical Applications, J. Lita da Silva, F. Caeiro, I. Natrio, C. A. Braumann (eds.), Springer-Verlag, Berlin Heidelberg, 213–222, 2013.
[14] E. Gon¸calves, J. Leite, and N. Mendes-Lopes, On the finite dimensional laws of threshold GARCH processes, in: Recent Developments in Modeling and Applications in Statistics, P. E. Oliveira, M. G. Temido, C. Henriques, M. Vichi (eds.), Springer-Verlag, Berlin Heidelberg, 237–247, 2013.
[15] L. de Haan, S. Resnick, H. Rootz´en, and C. de Vries, Extremal behaviour of solutions to a stochastic di↵erence equation with applications to ARCH-processes, Stoch. Processes Appl. 32, 213–224, 1989.
[16] A. O. Hall, Maximum term of a particular autoregressive sequence with discrete margins, Comm. Statist. Theory Methods 25 (4), 721–736, 1996.
[17] H. Kesten, Random di↵erence equations and renewal theory for products of random matrices, Acta Math. 131, 207-248, 1973.
[18] M. R. Leadbetter, G. Lindgren, and H. Rootz´en, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, Berlin, 1983.
[19] M. R. Leadbetter and L. Nandagopalan, On exceedance point process for stationary sequences under mild oscillation restrictions, in: Extreme Value Theory, Proceedings, Oberwolfach 1987, J. Hu¨sler, R. D. Reiss (eds.), Lecture Notes in Statist. 52, 69–80, Springer-Verlag, Berlim, 1989.
[20] N. Mendes-Lopes, Processus ponctuels chromatiques: estimation de la r´epartition locale des couleurs, Publ. Inst. Statist. Univ. Paris 28 (3), 39–58, 1983.
[21] N. Mendes-Lopes, Convergence et optimisation d’un estimateur de la r´epartition locale des couleurs d’un processus ponctuel chromatique, Publ. Inst. Statist. Univ. Paris 29 (2), 49–68, 1984.
[22] S. Nandagopalan, Multivariate Extremes and Estimation of the Extremal Index, Ph.D. Thesis, Univ. North Carolina at Chapel Hill, 1990.
[23] M. G. Temido, Classes de Leis Limites em Teoria de Valores Extremos – Estabilidade e Semiestabilidade, Tese de Doutoramento, Departamento de Matem´atica, Universidade de Coimbra, 2000.
[24] W. Vervaat, On a stochastic di↵erential equation and a representation of nonnegative infinitely divisible random variables, Adv. in Appl. Probab. 11, 750–783, 1979.
(M. I. Gomes) DEIO, FCUL, 1749-016, Lisboa, Portugal E-mail address: ivette.gomes@fc.ul.pt


































































































   20   21   22   23   24