Page 74 - Textos de Matemática Vol. 47
P. 74

64 M. M. NEVES
[2] P. Bu¨hlmann and H. Ku¨nsch, Block length selection in the bootstrap for time series, Comput. Statist. Data Anal. 31, 295–310, 1999.
[3] F. Caeiro and M. I. Gomes, On the bootstrap methodology for the estimation of the tail sample fraction, in:Proceedings of COMPSTAT2014, M. Gilli, G. Gonzalles-Rodriguez, A. Nieto-Reyes (eds.), 545–552, 2014.
[4] E. Carlstein, The use of subseries methods for estimating the variance of a general statistics from a stationary times series, Ann. Statist. 14, 1171–1179, 1986.
[5] J. Danielsson, L. de Haan, L. Peng, and C. G. de Vries, Using a bootstrap method to choose the sample fraction in the tail index estimation, J. Multivariate Anal. 76, 226–248, 2001.
[6] G. Draisma, L. de Haan, L. Peng, and T. Pereira, A bootstrap-based method to achieve optimality in estimating the extreme value index, Extremes 2 (4), 367–404, 1999.
[7] B. Efron, Bootstrap methods: another look at the jackknife, Ann. Statist. 7, 1–26, 1979.
[8] B. Efron, Jackknife-after-Bootstrap Standard Errors and Influence Functions, J. Roy.
Statist. Soc. Ser. B 54, 83–111, 1992.
[9] M. I. Gomes, Statistical inference in an extremal Markovian Model, in: COMPSTAT–
Proc. in Computational Statistics, K. Momirovic, V. Mildner (eds.), Physica-Verlag,
Heidelberg, 257–262, 1990.
[10] M. I. Gomes, Modelos extremais em esquemas de dependˆencia, in: Estat´ıstica Robusta,
Extremos e mais alguns temas, D. Pestana (ed.), I Congresso Ibero-Americano de Es-
tad´ıstica e Investigaci´on Operativa, 209–220, Edi¸c˜oes Salamandra, Lisboa, 1992.
[11] M. I. Gomes, On the estimation of parameters of rare events in environmental time series, in: Statistics for environment, V. Barnett, K. F. Turkman (eds.), 225–241. John
Wiley & Sons, 1993.
[12] M. I. Gomes, F. Caeiro, L. Henriques-Rodrigues, and B. G. Manjunath, Bootstrap meth-
ods in statistics of extremes, in: Handbook of Extreme Value Theory and Its Applications
to Finance and Insurance, F. Longin (ed.), John Wiley & Sons, (in press).
[13] M. I. Gomes, F. Figueiredo, and M. M. Neves, Adaptive estimation of heavy right tails:
resampling-based methods in action, Extremes 15, 463–489, 2012.
[14] M. I. Gomes, F. Figueiredo, M. J. Martins, and M. M. Neves, Resampling methodologies
and reliable tail estimation, South African Statist. J. 49, 1–20, 2015.
[15] M. I. Gomes, A. Hall, and C. Miranda, Subsampling techniques and the Jackknife methodology in the estimation of the extremal index, Comput. Statist. Data Anal. 52 (4),
2022–2041, 2008.
[16] M. I. Gomes, M. J. Martins, and M. M. Neves, Generalised Jackknife-based estimators
for univariate extreme-value modeling, Comm. Statist. Theory Methods 42 (7), 1227–
1245, 2013.
[17] M. I. Gomes, S. Mendonc¸a, and D. Pestana, Adaptive reduced-bias tail index and VaR
estimation via the bootstrap methodology, Comm. Statist. Theory Methods 40 (16),
2946–2968, 2011.
[18] M. I. Gomes and O. Oliveira, The bootstrap methodology in Statistics of Extremes:
choice of the optimal sample fraction, Extremes 4 (4), 331–358, 2001.
[19] M. I. Gomes and D. Pestana, A sturdy reduced-bias extreme quantile (VaR) estimator,
J. Amer. Statist. Assoc. 102 (477), 280–292, 2007.
[20] H. L. Gray and W. R. Schucany, The Generalized Jackknife Statistic, Marcel Dekker,
1972.


































































































   72   73   74   75   76