Page 75 - Textos de Matemática Vol. 47
P. 75
BOOTSTRAP AND JACKKNIFE METHODS IN EXTREMAL INDEX ESTIMATION 65
[21] P. Hall, Resampling a coverage pattern, Stochastic Process. Appl. 20, 231–246, 1985.
[22] P. Hall, J. L. Horowitz, and B.-Y. Jing, On blocking rules for the bootstrap with depen-
dent data, Biometrika 82 (3), 561–574, 1995.
[23] T. Hsing, Estimating the parameters of rare events, Stochastic Process. Appl. 37, 117–
139, 1991.
[24] T. Hsing, Extremal index estimation for a weakly dependent stationary sequence, Ann.
Statist. 21, 2043–2071, 1993.
[25] J. T. Hsing, J. Hu¨sler, and M. R. Leadbetter, On the exceedance point process for a
stationary sequence, Probab. Theory Related Fields 78 (1), 97–112, 1988.
[26] H. Ku¨nsch, The jackknife and the bootstrap for general stationary observations, Ann.
Statist. 17, 1217–1241, 1989.
[27] S. Lahiri, On the jackknife after bootstrap method for dependent data and its consistency
properties, Econometric Theory 18, 79–98, 2002.
[28] S. Lahiri, K. Furukawa, and Y-D. Lee, Nonparametric plug-in method for selecting the
optimal block lengths, Stat. Methodol. 4, 292–321, 2007.
[29] M. R. Leadbetter, Extremes and local dependence in stationary sequences, Z. Wahrsch.
Verw. Gebiete 65 (2), 291–306, 1983.
[30] M. R. Leadbetter, G. Lindgren, and H. Rootz´en, Extremes and related properties of
random sequences and series, Springer-Verlag, New York, 1983.
[31] M. R. Leadbetter and L. Nandagopalan, On exceedance point process for stationary
sequences under mild oscillation restrictions, in: Extreme Value Theory, Proceedings, Oberwolfach 1987, J. Hu¨sler, R. D. Reiss (eds.), Lecture Notes in Statist. 52, 69–80, Springer-Verlag, Berlim, 1989.
[32] R. Liu and K. Singh, Moving blocks jackknife and bootstrap capture weak dependence, in: Exploring the Limits of Bootstrap, R. Lepage, L. Billard (eds.), 225–248, Wiley, New York, 1992.
[33] S. Nandagopalan, Multivariate Extremes and Estimation of the Extremal Index, PhD Thesis, University of North Carolina, Chapel Hill, 1990.
[34] M. M. Neves, M. I. Gomes, F. Figueiredo, and D. Prata Gomes, Modeling Extreme Events: Sample Fraction Adaptive Choice in Parameter Estimation, J. Stat.Theory Pract. 9 (1), 184–199, 2014.
[35] D. R. Politis and J. P. Romano, A Circular Block-Resampling Procedure for Stationary Data, in: Exploring the Limits of Bootstrap, R. Lepage, L. Billard (eds.), 263–270, Wiley, New York, 1992.
[36] D. R. Politis and J. P. Romano, The stationary bootstrap, J. Amer. Statist. Assoc. 89 (428), 1303–1313, 1994.
[37] D. R. Politis and H. White, Automatic Block-Length Selection for the Dependent Boot- strap, Econometric Rev. 23 (1), 53–70, 2004.
[38] D. Prata Gomes and M. M. Neves, Resampling Methodologies and the Estimation of Parameters of Rare Events, in: Numerical Analysis and Applied Mathematics (ICNAAM 2011), AIP Conf. Proc. 1389, 1475–1478, 2011.
[39] D. Prata Gomes and M. M. Neves, Bootstrap and other resampling methodologies in statistics of extremes, Comm. Statist. Simulation Comput. (accepted), 2015a.
[40] D. Prata Gomes and M. M. Neves, Adaptive choice and resampling techniques in ex- tremal index estimation, in: Theory and Practice of Risk Assessment, C. Kitsos, T. Oliveira, A. Rigas, S. Gulati (eds.), Springer Proceedings in Mathematics and Statistics (in press), 2015b.